1,948 research outputs found

    Analysis of Langevin Monte Carlo via convex optimization

    Full text link
    In this paper, we provide new insights on the Unadjusted Langevin Algorithm. We show that this method can be formulated as a first order optimization algorithm of an objective functional defined on the Wasserstein space of order 22. Using this interpretation and techniques borrowed from convex optimization, we give a non-asymptotic analysis of this method to sample from logconcave smooth target distribution on Rd\mathbb{R}^d. Based on this interpretation, we propose two new methods for sampling from a non-smooth target distribution, which we analyze as well. Besides, these new algorithms are natural extensions of the Stochastic Gradient Langevin Dynamics (SGLD) algorithm, which is a popular extension of the Unadjusted Langevin Algorithm. Similar to SGLD, they only rely on approximations of the gradient of the target log density and can be used for large-scale Bayesian inference

    Implicit Langevin Algorithms for Sampling From Log-concave Densities

    Full text link
    For sampling from a log-concave density, we study implicit integrators resulting from θ\theta-method discretization of the overdamped Langevin diffusion stochastic differential equation. Theoretical and algorithmic properties of the resulting sampling methods for θ∈[0,1] \theta \in [0,1] and a range of step sizes are established. Our results generalize and extend prior works in several directions. In particular, for θ≥1/2\theta\ge1/2, we prove geometric ergodicity and stability of the resulting methods for all step sizes. We show that obtaining subsequent samples amounts to solving a strongly-convex optimization problem, which is readily achievable using one of numerous existing methods. Numerical examples supporting our theoretical analysis are also presented
    • …
    corecore