558 research outputs found

    A model for multi-attack classification to improve intrusion detection performance using deep learning approaches

    Full text link
    This proposed model introduces novel deep learning methodologies. The objective here is to create a reliable intrusion detection mechanism to help identify malicious attacks. Deep learning based solution framework is developed consisting of three approaches. The first approach is Long-Short Term Memory Recurrent Neural Network (LSTM-RNN) with seven optimizer functions such as adamax, SGD, adagrad, adam, RMSprop, nadam and adadelta. The model is evaluated on NSL-KDD dataset and classified multi attack classification. The model has outperformed with adamax optimizer in terms of accuracy, detection rate and low false alarm rate. The results of LSTM-RNN with adamax optimizer is compared with existing shallow machine and deep learning models in terms of accuracy, detection rate and low false alarm rate. The multi model methodology consisting of Recurrent Neural Network (RNN), Long-Short Term Memory Recurrent Neural Network (LSTM-RNN), and Deep Neural Network (DNN). The multi models are evaluated on bench mark datasets such as KDD99, NSL-KDD, and UNSWNB15 datasets. The models self-learnt the features and classifies the attack classes as multi-attack classification. The models RNN, and LSTM-RNN provide considerable performance compared to other existing methods on KDD99 and NSL-KDD datase

    Recurrent Neural Network Architectures Toward Intrusion Detection

    Get PDF
    Recurrent Neural Networks (RNN) show a remarkable result in sequence learning, particularly in architectures with gated unit structures such as Long Short-term Memory (LSTM). In recent years, several permutations of LSTM architecture have been proposed mainly to overcome the computational complexity of LSTM. In this dissertation, a novel study is presented that will empirically investigate and evaluate LSTM architecture variants such as Gated Recurrent Unit (GRU), Bi-Directional LSTM, and Dynamic-RNN for LSTM and GRU specifically on detecting network intrusions. The investigation is designed to identify the learning time required for each architecture algorithm and to measure the intrusion prediction accuracy. RNN was evaluated on the DARPA/KDD Cup’99 intrusion detection dataset for each architecture. Feature selection mechanisms were also implemented to help in identifying and removing nonessential variables from data that do not affect the accuracy of the prediction models, in this case Principle Component Analysis (PCA) and the RandomForest (RF) algorithm. The results showed that RF captured more significant features over PCA when the accuracy for RF 97.86% for LSTM and 96.59% for GRU, were PCA 64.34% for LSTM and 67.97% for GRU. In terms of RNN architectures, prediction accuracy of each variant exhibited improvement at specific parameters, yet with a large dataset and a suitable time training, the standard vanilla LSTM tended to lead among all other RNN architectures which scored 99.48%. Although Dynamic RNN’s offered better performance with accuracy, Dynamic-RNN GRU scored 99.34%, however they tended to take a longer time to be trained with high training cycles, Dynamic-RNN LSTM needs 25284.03 seconds at 1000 training cycle. GRU architecture had one variant introduced to reduce LSTM complexity, which developed with fewer parameters resulting in a faster-trained model compared to LSTM needs 1903.09 seconds when LSTM required 2354.93 seconds for the same training cycle. It also showed equivalent performance with respect to the parameters such as hidden layers and time-step. BLSTM offered impressive training time as 190 seconds at 100 training cycle, though the accuracy was below that of the other RNN architectures which didn’t exceed 90%

    A deep learning approach for intrusion detection in Internet of Things using bi-directional long short-term memory recurrent neural network

    Get PDF
    Internet-of-Things connects every ‘thing’ with the Internet and allows these ‘things’ to communicate with each other. IoT comprises of innumerous interconnected devices of diverse complexities and trends. This fundamental nature of IoT structure intensifies the amount of attack targets which might affect the sustainable growth of IoT. Thus, security issues become a crucial factor to be addressed. A novel deep learning approach have been proposed in this thesis, for performing real-time detections of security threats in IoT systems using the Bi-directional Long Short-Term Memory Recurrent Neural Network (BLSTM RNN). The proposed approach have been implemented through Google TensorFlow implementation framework and Python programming language. To train and test the proposed approach, UNSW-NB15 dataset has been employed, which is the most up-to-date benchmark dataset with sequential samples and contemporary attack patterns. This thesis work employs binary classification of attack and normal patterns. The experimental result demonstrates the proficiency of the introduced model with respect to recall, precision, FAR and f-1 score. The model attains over 97% detection accuracy. The test result demonstrates that BLSTM RNN is profoundly effective for building highly efficient model for intrusion detection and offers a novel research methodology

    Deep Learning Approach for Intrusion Detection System (IDS) in the Internet of Things (IoT) Network using Gated Recurrent Neural Networks (GRU)

    Get PDF
    The Internet of Things (IoT) is a complex paradigm where billions of devices are connected to a network. These connected devices form an intelligent system of systems that share the data without human-to-computer or human-to-human interaction. These systems extract meaningful data that can transform human lives, businesses, and the world in significant ways. However, the reality of IoT is prone to countless cyber-attacks in the extremely hostile environment like the internet. The recent hack of 2014 Jeep Cherokee, iStan pacemaker, and a German steel plant are a few notable security breaches. To secure an IoT system, the traditional high-end security solutions are not suitable, as IoT devices are of low storage capacity and less processing power. Moreover, the IoT devices are connected for longer time periods without human intervention. This raises a need to develop smart security solutions which are light-weight, distributed and have a high longevity of service. Rather than per-device security for numerous IoT devices, it is more feasible to implement security solutions for network data. The artificial intelligence theories like Machine Learning and Deep Learning have already proven their significance when dealing with heterogeneous data of various sizes. To substantiate this, in this research, we have applied concepts of Deep Learning and Transmission Control Protocol/Internet Protocol (TCP/IP) to build a light-weight distributed security solution with high durability for IoT network security. First, we have examined the ways of improving IoT architecture and proposed a light-weight and multi-layered design for an IoT network. Second, we have analyzed the existingapplications of Machine Learning and Deep Learning to the IoT and Cyber-Security. Third, we have evaluated deep learning\u27s Gated Recurrent Neural Networks (LSTM and GRU) on the DARPA/KDD Cup \u2799 intrusion detection data set for each layer in the designed architecture. Finally, from the evaluated metrics, we have proposed the best neural network design suitable for the IoT Intrusion Detection System. With an accuracy of 98.91% and False Alarm Rate of 0.76 %, this unique research outperformed the performance results of existing methods over the KDD Cup \u2799 dataset. For this first time in the IoT research, the concepts of Gated Recurrent Neural Networks are applied for the IoT security

    Flexible and Robust Real-Time Intrusion Detection Systems to Network Dynamics

    Get PDF
    Deep learning-based intrusion detection systems have advanced due to their technological innovations such as high accuracy, automation, and scalability to develop an effective network intrusion detection system (NIDS). However, most of the previous research has focused on model generation through intensive analysis of feature engineering instead of considering real environments. They have limitations to applying the previous methods for a real network environment to detect real-time network attacks. In this paper, we propose a new flexible and robust NIDS based on Recurrent Neural Network (RNN) with a multi-classifier to generate a detection model in real time. The proposed system adaptively and intelligently adjusts the generated model with given system parameters that can be used as security parameters to defend against the attacker’s obfuscation techniques in real time. In the experimental results, the proposed system detects network attacks with a high accuracy and high-speed model upgrade in real-time while showing robustness under an attack

    A Machine Learning Approach for Intrusion Detection

    Get PDF
    Master's thesis in Information- and communication technology (IKT590)Securing networks and their confidentiality from intrusions is crucial, and for this rea-son, Intrusion Detection Systems have to be employed. The main goal of this thesis is to achieve a proper detection performance of a Network Intrusion Detection System (NIDS). In this thesis, we have examined the detection efficiency of machine learning algorithms such as Neural Network, Convolutional Neural Network, Random Forestand Long Short-Term Memory. We have constructed our models so that they can detect different types of attacks utilizing the CICIDS2017 dataset. We have worked on identifying 15 various attacks present in CICIDS2017, instead of merely identifying normal-abnormal traffic. We have also discussed the reason why to use precisely this dataset, and why should one classify by attack to enhance the detection. Previous works based on benchmark datasets such as NSL-KDD and KDD99 are discussed. Also, how to address and solve these issues. The thesis also shows how the results are effected using different machine learning algorithms. As the research will demon-strate, the Neural Network, Convulotional Neural Network, Random Forest and Long Short-Term Memory are evaluated by conducting cross validation; the average score across five folds of each model is at 92.30%, 87.73%, 94.42% and 87.94%, respectively. Nevertheless, the confusion metrics was also a crucial measurement to evaluate the models, as we shall see. Keywords: Information security, NIDS, Machine Learning, Neural Network, Convolutional Neural Network, Random Forest, Long Short-Term Memory, CICIDS2017
    • …
    corecore