78 research outputs found

    衛星搭載レーダにより明らかとなったアラスカ南岸における大きな降水勾配

    Get PDF
    This study focuses on the considerable spatial variability of precipitation along the western coast of a continent at mid-high latitude and investigates the precipitation climatology and mechanism along the south coast of Alaska, using datasets of spaceborne radars onboard two satellites, namely, the Dual-frequency Precipitation Radar (DPR) KuPR onboard the Global Precipitation Measurement (GPM) core satellite and the Cloud Profiling Radar (CPR) onboard CloudSat. At higher latitudes, differentiating the phase of precipitation particles falling on the ground is crucial in evaluating precipitation. Classification of satellite precipitation products according to the distance from the coastline shows that precipitation characteristics differ greatly on opposite sides of the coastline. Above coastal waters, relatively heavy precipitation with CPR reflectivity larger than 7 dBZ from orographically enhanced nimbostratus clouds, which can be detected by KuPR, is frequently captured. Meanwhile, along coastal mountains, light-to-moderate snowfall events with CPR reflectivity lower than 11 dBZ, which are well detected by the CPR but rarely detected by KuPR, frequently occur, and they are mainly brought by nimbostratus clouds advected from the coast and orographically enhanced shallow cumuliform clouds. There is no clear diurnal variation of precipitation except in summer, and the amplitude of the variation during summer is still low compared with total precipitation especially over the ocean, suggesting that the transport of synoptic-scale water vapor brings much precipitation throughout the year. Case studies and seasonal analysis indicate that frontal systems and moisture flows associated with extratropical cyclones that arrive from the Gulf of Alaska are blocked by terrain and stagnate along the coast to yield long-lasting precipitation along the coastline. The results of this study illustrate the importance of using complementary information provided by these radars to evaluate the precipitation climatology in a region in which both rainfall and snowfall occur.本研究は、空間変動の大きい中高緯度大陸西岸の降水に焦点を当て、全球降水観測計画(GPM)主衛星搭載二周波降水レーダ(DPR)Ku帯降水レーダ(KuPR)およびCloudSat衛星搭載雲レーダ(CPR)を用いてアラスカ南岸の気候学的な降水分布や降水メカニズムについて調査した。高緯度では地表へ落下する降水粒子の相を判別することが降水を評価するうえで不可欠である。海岸線からの距離によって衛星降水プロダクトを分類することで、海岸線を挟んだ海側と陸側で降水特性が大きく異なっていることを示した。沿岸の海上では、地形効果で強化された乱層雲からのCPR反射強度7dBZ以上の比較的強い降水が頻繁にとらえられており、KuPRでもとらえられている。一方、海岸山脈上では、CPR反射強度11dBZ以下の弱~中程度の降雪が頻繁に発生していることが、CPRでとらえられているがKuPRではほとんどとらえられていない。この雪は主に海岸域より移流してきた乱層雲や地形効果を受けて強まった浅い対流雲によってもたらされている。夏季を除いて顕著な降水の日周期変動はなく、さらに夏季の日周期変動の振幅も総降水量と比べると特に海上で小さく、総観規模の水蒸気輸送が年間を通して多くの降水をもたらしていることを示唆している。事例解析と季節解析により、アラスカ湾から到来する温帯低気圧に伴う前線システム及び水蒸気の流れが、海岸沿いで地形によりブロックされて停滞し、沿岸に長く持続した降水をもたらしていることが示された。本研究の結果は、降雨・降雪の両方が発生する地域の降水気候値を評価するには、これら2つのレーダの相補的な情報を用いることが重要であることを示している

    Remote Sensing of Precipitation from Airborne and Spaceborne Radar

    Get PDF
    Weather radar measurements from airborne or satellite platforms can be an effective remote sensing tool for examining the three-dimensional structures of clouds and precipitation. This chapter describes some fundamental properties of radar measurements and their dependence on the particle size distribution (PSD) and radar frequency. The inverse problem of solving for the vertical profile of PSD from a profile of measured reflectivity is stated as an optimal estimation problem for single- and multi-frequency measurements. Phenomena that can change the measured reflectivity Z(sub m) from its intrinsic value Z(sub e), namely attenuation, non-uniform beam filling, and multiple scattering, are described and mitigation of these effects in the context of the optimal estimation framework is discussed. Finally, some techniques involving the use of passive microwave measurements to further constrain the retrieval of the PSD are presented

    A Ka-band wind Geophysical Model Function using doppler scatterometer measurements from the Air-Sea Interaction Tower experiment

    Get PDF
    © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Polverari, F., Wineteer, A., Rodríguez, E., Perkovic-Martin, D., Siqueira, P., Farrar, J., Adam, M., Closa Tarrés, M., & Edson, J. A Ka-band wind Geophysical Model Function using doppler scatterometer Measurements from the Air-Sea Interaction Tower experiment. Remote Sensing, 14(9), (2022): 2067, https://doi.org/10.3390/rs14092067.Physical understanding and modeling of Ka-band ocean surface backscatter is challenging due to a lack of measurements. In the framework of the NASA Earth Ventures Suborbital-3 Submesoscale Ocean Dynamics Experiment (S-MODE) mission, a Ka-Band Ocean continuous wave Doppler Scatterometer (KaBODS) built by the University of Massachusetts, Amherst (UMass) was installed on the Woods Hole Oceanographic Institution (WHOI) Air-Sea Interaction Tower. Together with ASIT anemometers, a new data set of Ka-band ocean surface backscatter measurements along with surface wind/wave and weather parameters was collected. In this work, we present the KaBODS instrument and an empirical Ka-band wind Geophysical Model Function (GMF), the so-called ASIT GMF, based on the KaBODS data collected over a period of three months, from October 2019 to January 2020, for incidence angles ranging between 40° and 68°. The ASIT GMF results are compared with an existing Ka-band wind GMF developed from data collected during a tower experiment conducted over the Black Sea. The two GMFs show differences in terms of wind speed and wind direction sensitivity. However, they are consistent in the values of the standard deviation of the model residuals. This suggests an intrinsic geophysical variability characterizing the Ka-band surface backscatter. The observed variability does not significantly change when filtering out swell-dominated data, indicating that the long-wave induced backscatter modulation is not the primary source of the KaBODS backscatter variability. We observe evidence of wave breaking events, which increase the skewness of the backscatter distribution in linear space, consistent with previous studies. Interestingly, a better agreement is seen between the GMFs and the actual data at an incidence angle of 60° for both GMFs, and the statistical analysis of the model residuals shows a reduced backscatter variability at this incidence angle. This study shows that the ASIT data set is a valuable reference for studies of Ka-band backscatter. Further investigations are on-going to fully characterize the observed variability and its implication in the wind GMF development.F.P. research was funded by an appointment to the NASA Postdoctoral Program initially administered by Universities Space Research Association and now administered by Oak Ridge Associated Universities, under a contract with National Aeronautics and Space Administration. A.W., E.R., D.P.-M., P.S., M.A., M.C.T. and J.T.F. received support from the S-MODE project, an EVS-3 Investigation awarded under NASA Research Announcement NNH17ZDA001N-EVS3 (JPL/Cal Tech: 80NM0019F0058, WHOI: 80NSSC19K1256, UMass Amherst: 80NSSC19K1282). J.B.E. acknowledges support from NSF under grant number OCE-1756789

    A polarimetric radar operator to evaluate precipitation from the COSMO atmospheric model

    Get PDF
    Weather radars provide real-time measurements of precipitation at a high temporal and spatial resolution and over a large domain. A drawback, however, it that these measurements are indirect and require careful interpretation to yield relevant information about the mechanisms of precipitation. Radar observations are an invaluable asset for the numerical forecast of precipitation, both for data assimilation, parametrization of subscale phenomena and model verification. This thesis aims at investigating new uses for polarimetric radar data in numerical weather prediction. The first part of this work is devoted to the design of an algorithm able to automatically detect the location and extent of the melting layer of precipitation , an important feature of stratiform precipitation, from vertical radar scans. This algorithm is then used to provide a detailed characterization of the melting layer, in several climatological regions, providing thus relevant information for the parameterization of melting processes and the evaluation of simulated freezing level heights. The second part of this work uses a multi-scale approach based on the multifractal framework to evaluate precipitation fields simulated by the COSMO weather model with radar observations. A climatological analysis is first conducted to relate multifractal parameters to physical descriptors of precipitation. A short-term analysis, that focuses on three precipitation events over Switzerland, is then performed. The results indicate that the COSMO simulations exhibit spatial scaling breaks that are not present in the radar data. It is also shown that a more advanced microphysics parameterization generates larger extreme values, and more discontinuous precipitation fields, which agree better with radar observations. The last part of this thesis describes a new forward polarimetric radar operator, able to simulate realistic radar variables from outputs of the COSMO model, taking into account most physical aspects of beam propagation and scattering. An efficient numerical scheme is proposed to estimate the full Doppler spectrum, a type of measurement often performed by research radars, which provides rich information about the particle velocities and turbulence. The operator is evaluated with large datasets from various ground and spaceborne radars. This evaluation shows that the operator is able to simulate accurate Doppler variables and realistic distributions of polarimetric variables in the liquid phase. In the solid phase, the simulated reflectivities agree relatively well with radar observations, but the polarimetric variables tend to be underestimated. A detailed sensitivity analysis of the radar operator reveals that, in the liquid phase, the simulated radar variables depend very much on the hypothesis about drop geometry and drop size distributions. In the solid phase, the potential of more advanced scattering techniques is investigated, revealing that these methods could help to resolve the strong underestimation of polarimetric variables in snow and graupel

    Microwave Indices from Active and Passive Sensors for Remote Sensing Applications

    Get PDF
    Past research has comprehensively assessed the capabilities of satellite sensors operating at microwave frequencies, both active (SAR, scatterometers) and passive (radiometers), for the remote sensing of Earth’s surface. Besides brightness temperature and backscattering coefficient, microwave indices, defined as a combination of data collected at different frequencies and polarizations, revealed a good sensitivity to hydrological cycle parameters such as surface soil moisture, vegetation water content, and snow depth and its water equivalent. The differences between microwave backscattering and emission at more frequencies and polarizations have been well established in relation to these parameters, enabling operational retrieval algorithms based on microwave indices to be developed. This Special Issue aims at providing an overview of microwave signal capabilities in estimating the main land parameters of the hydrological cycle, e.g., soil moisture, vegetation water content, and snow water equivalent, on both local and global scales, with a particular focus on the applications of microwave indices

    Atmospheric Instrument Systems and Technology in the Goddard Earth Sciences Division

    Get PDF
    Studies of the Earths atmosphere require a comprehensive set of observations that rely on instruments flown on spacecraft, aircraft, and balloons as well as those deployed on the surface. Within NASAs Goddard Space Flight Center (GSFC) Earth Sciences Division-Atmospheres, laboratories and offices maintain an active program of instrument system development and observational studies that provide: 1) information leading to a basic understanding of atmospheric processes and their relationships with the Earths climate system, 2) prototypes for future flight instruments, 3) instruments to serve as calibration references for satellite missions, and 4) instruments for future field validation campaigns that support ongoing space missions. Our scientists participate in all aspects of instrument activity, including component and system design, calibration techniques, retrieval algorithm development, and data processing systems. The Atmospheres Program has well-equipped labs and test equipment to support the development and testing of instrument systems, such as a radiometric calibration and development facility to support the calibration of ultraviolet and visible (UV/VIS), space-borne solar backscatter instruments. This document summarizes the features and characteristics of 46 instrument systems that currently exist or are under development. The report is organized according to active, passive, or in situ remote sensing across the electromagnetic spectrum. Most of the systems are considered operational in that they have demonstrated performance in the field and are capable of being deployed on relatively short notice. Other systems are under study or of low technical readiness level (TRL). The systems described herein are designed mainly for surface or airborne platforms. However, two Cubesat systems also have been developed through collaborative efforts. The Solar Disk Sextant (SDS) is the single balloon-borne instrument. The lidar systems described herein are designed to retrieve clouds, aerosols, methane, water vapor pressure, temperature, and winds. Most of the lasers operate at some wavelength combination of 355, 532, and 1064 nm. The various systems provide high sensitivity measurements based on returns from backscatter or Raman scattering including intensity and polarization. Measurements of the frequency (Doppler) shift of light scattered from various atmospheric constitutes can also be made. Microwave sensors consist of both active (radar) and passive (radiometer) systems. These systems are important for studying processes involving water in various forms. The dielectric properties of water affect microwave brightness temperatures, which are used to retrieve atmospheric parameters such as rainfall rate and other key elements of the hydrological cycle. Atmosphere radar systems operate in the range from 9.6 GHz to 94 GHz and have measurement accuracies from -5 to 1 dBZ; radiometers operate in the 50 GHz to 874 GHz range with accuracies from 0.5 to 1 degree K; conical and cross-track scan modes are used. Our passive optical sensors, consisting of radiometers and spectrometers, collectively operate from the UV into the infrared. These systems measure energy fluxes and atmospheric parameters such as trace gases, aerosols, cloud properties, or altitude profiles of various species. Imager spatial resolution varies from 37 m to 400 m depending on altitude; spectral resolution is as small as 0.5 nm. Many of the airborne systems have been developed to fly on multiple aircraft

    Review Article: Global Monitoring of Snow Water Equivalent Using High-Frequency Radar Remote Sensing

    Get PDF
    Seasonal snow cover is the largest single component of the cryosphere in areal extent, covering an average of 46 × 106 km2 of Earth\u27s surface (31 % of the land area) each year, and is thus an important expression and driver of the Earth\u27s climate. In recent years, Northern Hemisphere spring snow cover has been declining at about the same rate (∼ −13 % per decade) as Arctic summer sea ice. More than one-sixth of the world\u27s population relies on seasonal snowpack and glaciers for a water supply that is likely to decrease this century. Snow is also a critical component of Earth\u27s cold regions\u27 ecosystems, in which wildlife, vegetation, and snow are strongly interconnected. Snow water equivalent (SWE) describes the quantity of water stored as snow on the land surface and is of fundamental importance to water, energy, and geochemical cycles. Quality global SWE estimates are lacking. Given the vast seasonal extent combined with the spatially variable nature of snow distribution at regional and local scales, surface observations are not able to provide sufficient SWE information. Satellite observations presently cannot provide SWE information at the spatial and temporal resolutions required to address science and high-socio-economic-value applications such as water resource management and streamflow forecasting. In this paper, we review the potential contribution of X- and Ku-band synthetic aperture radar (SAR) for global monitoring of SWE. SAR can image the surface during both day and night regardless of cloud cover, allowing high-frequency revisit at high spatial resolution as demonstrated by missions such as Sentinel-1. The physical basis for estimating SWE from X- and Ku-band radar measurements at local scales is volume scattering by millimeter-scale snow grains. Inference of global snow properties from SAR requires an interdisciplinary approach based on field observations of snow microstructure, physical snow modeling, electromagnetic theory, and retrieval strategies over a range of scales. New field measurement capabilities have enabled significant advances in understanding snow microstructure such as grain size, density, and layering. We describe radar interactions with snow-covered landscapes, the small but rapidly growing number of field datasets used to evaluate retrieval algorithms, the characterization of snowpack properties using radar measurements, and the refinement of retrieval algorithms via synergy with other microwave remote sensing approaches. This review serves to inform the broader snow research, monitoring, and application communities on progress made in recent decades and sets the stage for a new era in SWE remote sensing from SAR measurements

    Theoretical modeling of dual-frequency scatterometer response: improving ocean wind and rainfall effects

    Get PDF
    Ocean surface wind is a key parameter of the Earth’s climate system. Occurring at the interface between the ocean and the atmosphere, ocean winds modulate fluxes of heat, moisture and gas exchanges. They reflect the lower branch of the atmospheric circulation and represent a major driver of the ocean circulation. Studying the long-term trends and variability of the ocean surface winds is of key importance in our effort to understand the Earth’s climate system and the causes of its changes. More than three decades of surface wind data are available from spaceborne scatterometer/radiometer missions and there is an ongoing effort to inter-calibrate all these measurements with the aim of building a complete and continuous picture of the ocean wind variability. Currently, spaceborne scatterometer wind retrievals are obtained by inversion algorithms of empirical Geophysical Model Functions (GMFs), which represent the relationship between ocean surface backscattering coefficient and the wind parameters. However, by being measurement-dependent, the GMFs are sensor-specific and, in addition, they may be not properly defined in all weather conditions. This may reduce the accuracy of the wind retrievals in presence of rain and it may also lead to inconsistencies amongst winds retrieved by different sensors. Theoretical models of ocean backscatter have the big potential of providing a more general and understandable relation between the measured microwave backscatter and the surface wind field than empirical models. Therefore, the goal of our research is to understand and address the limitations of the theoretical modeling, in order to propose a new strategy towards the definition of a unified theoretical model able to account for the effects of both wind and rain. In this work, it is described our approach to improve the theoretical modeling of the ocean response, starting from the Ku-band (13.4 GHz) frequency and then broadening the analysis at C-band (5.3 GHz) frequency. This research has revealed the need for new understanding of the frequency-dependent modeling of the surface backscatter in response to the wind-forced surface wave spectrum. Moreover, our ocean wave spectrum modification introduced to include the influences of the surface rain, allows the interpretation/investigation of the scatterometer observations in terms not only of the surface winds but also of the surface rain, defining an additional step needed to improve the wind retrievals algorithms as well as the possibility to jointly estimate wind and rain from scatterometer observations

    Challenges in measuring winter precipitation : Advances in combining microwave remote sensing and surface observations

    Get PDF
    Globally, snow influences Earth and its ecosystems in several ways by having a significant impact on, e.g., climate and weather, Earth radiation balance, hydrology, and societal infrastructures. In mountainous regions and at high latitudes snowfall is vital in providing freshwater resources by accumulating water within the snowpack and releasing the water during the warm summer season. Snowfall also has an impact on transportation services, both in aviation and road maintenance. Remote sensing instrumentation, such as radars and radiometers, provide the needed temporal and spatial coverage for monitoring precipitation globally and on regional scales. In microwave remote sensing, the quantitative precipitation estimation is based on the assumed relations between the electromagnetic and physical properties of hydrometeors. To determine these relations for solid winter precipitation is challenging. Snow particles have an irregular structure, and their properties evolve continuously due to microphysical processes that take place aloft. Hence also the scattering properties, which are dependent on the size, shape, and dielectric permittivity of the hydrometeors, are changing. In this thesis, the microphysical properties of snowfall are studied with ground-based measurements, and the changes in prevailing snow particle characteristics are linked to remote sensing observations. Detailed ground observations from heavily rimed snow particles to openstructured low-density snowflakes are shown to be connected to collocated triple-frequency signatures. As a part of this work, two methods are implemented to retrieve mass estimates for an ensemble of snow particles combining observations of a video-disdrometer and a precipitation gauge. The changes in the retrieved mass-dimensional relations are shown to correspond to microphysical growth processes. The dependence of the C-band weather radar observations on the microphysical properties of snow is investigated and parametrized. The results apply to improve the accuracy of the radar-based snowfall estimation, and the developed methodology also provides uncertainties of the estimates. Furthermore, the created data set is utilized to validate space-borne snowfall measurements. This work demonstrates that the C-band weather radar signal propagating through a low melting layer can significantly be attenuated by the melting snow particles. The expected modeled attenuation is parametrized according to microphysical properties of snow at the top of the melting layer
    corecore