5,544 research outputs found

    Outage Probability of Wireless Ad Hoc Networks with Cooperative Relaying

    Full text link
    In this paper, we analyze the performance of cooperative transmissions in wireless ad hoc networks with random node locations. According to a contention probability for message transmission, each source node can either transmits its own message signal or acts as a potential relay for others. Hence, each destination node can potentially receive two copies of the message signal, one from the direct link and the other from the relay link. Taking the random node locations and interference into account, we derive closed-form expressions for the outage probability with different combining schemes at the destination nodes. In particular, the outage performance of optimal combining, maximum ratio combining, and selection combining strategies are studied and quantified.Comment: 7 pages; IEEE Globecom 201

    Quarantine region scheme to mitigate spam attacks in wireless sensor networks

    Get PDF
    The Quarantine Region Scheme (QRS) is introduced to defend against spam attacks in wireless sensor networks where malicious antinodes frequently generate dummy spam messages to be relayed toward the sink. The aim of the attacker is the exhaustion of the sensor node batteries and the extra delay caused by processing the spam messages. Network-wide message authentication may solve this problem with a cost of cryptographic operations to be performed over all messages. QRS is designed to reduce this cost by applying authentication only whenever and wherever necessary. In QRS, the nodes that detect a nearby spam attack assume themselves to be in a quarantine region. This detection is performed by intermittent authentication checks. Once quarantined, a node continuously applies authentication measures until the spam attack ceases. In the QRS scheme, there is a tradeoff between the resilience against spam attacks and the number of authentications. Our experiments show that, in the worst-case scenario that we considered, a not quarantined node catches 80 percent of the spam messages by authenticating only 50 percent of all messages that it processe

    Rateless-Coding-Assisted Multi-Packet Spreading over Mobile Networks

    Full text link
    A novel Rateless-coding-assisted Multi-Packet Relaying (RMPR) protocol is proposed for large-size data spreading in mobile wireless networks. With this lightweight and robust protocol, the packet redundancy is reduced by a factor of n\sqrt n, while the spreading time is reduced at least by a factor of ln(n)\ln (n). Closed-form bounds and explicit non-asymptotic results are presented, which are further validated through simulations. Besides, the packet duplication phenomenon in the network setting is analyzed for the first time

    A Simple Cooperative Diversity Method Based on Network Path Selection

    Full text link
    Cooperative diversity has been recently proposed as a way to form virtual antenna arrays that provide dramatic gains in slow fading wireless environments. However most of the proposed solutions require distributed space-time coding algorithms, the careful design of which is left for future investigation if there is more than one cooperative relay. We propose a novel scheme, that alleviates these problems and provides diversity gains on the order of the number of relays in the network. Our scheme first selects the best relay from a set of M available relays and then uses this best relay for cooperation between the source and the destination. We develop and analyze a distributed method to select the best relay that requires no topology information and is based on local measurements of the instantaneous channel conditions. This method also requires no explicit communication among the relays. The success (or failure) to select the best available path depends on the statistics of the wireless channel, and a methodology to evaluate performance for any kind of wireless channel statistics, is provided. Information theoretic analysis of outage probability shows that our scheme achieves the same diversity-multiplexing tradeoff as achieved by more complex protocols, where coordination and distributed space-time coding for M nodes is required, such as those proposed in [7]. The simplicity of the technique, allows for immediate implementation in existing radio hardware and its adoption could provide for improved flexibility, reliability and efficiency in future 4G wireless systems.Comment: To appear, IEEE JSAC, special issue on 4
    corecore