16 research outputs found

    Test Reduction for Power Density Emitted by Handset mmWave Antenna Arrays

    Get PDF

    Analysis of Human EMF Exposure in 5G Cellular Systems

    Get PDF
    Increasing concerns of communications at a frequency spectrum higher than 6 GHz have gained international alarm that suggests more research is needed before it is deployed successfully. In this context, in the first part of this thesis, we investigated the human electromagnetic field (EMF) exposure in indoor and outdoor environments from fifth-generation (5G) downlink communications and compared its impacts with the present cellular technologies considering the features that the 5G will likely adopt. The second part focuses on mitigation of human exposure for both indoor and outdoor environments with two different methods adopted. Our simulation results suggest that while the impacts from 5G communications cross the regulatory borders for a very short separation distance between base stations (BSs) and user equipment (UE), the exposure level remains high throughout the network compared to the present systems. This work also highlights the significance of considering SAR for the measurement of exposure compliance in downlinks

    Towards environmental RF-EMF assessment of mmwave high-node density complex heterogeneous environments

    Get PDF
    The densification of multiple wireless communication systems that coexist nowadays, as well as the 5G new generation cellular systems advent towards the millimeter wave (mmWave) frequency range, give rise to complex context-aware scenarios with high-node density heterogeneous networks. In this work, a radiofrequency electromagnetic field (RF-EMF) exposure assessment from an empirical and modeling approach for a large, complex indoor setting with high node density and traffic is presented. For that purpose, an intensive and comprehensive in-depth RF-EMF E-field characterization study is provided in a public library study case, considering dense personal mobile communications (5G FR2 @28 GHz) and wireless 802.11ay (@60 GHz) data access services on the mmWave frequency range. By means of an enhanced in-house deterministic 3D ray launching (3D-RL) simulation tool for RF-EMF exposure assessment, different complex heterogenous scenarios of high complexity are assessed in realistic operation conditions, considering different user distributions and densities. The use of directive antennas and MIMO beamforming techniques, as well as all the corresponding features in terms of radio wave propagation, such as the body shielding effect, dispersive material properties of obstacles, the impact of the distribution of scatterers and the associated electromagnetic propagation phenomena, are considered for simulation. Discussion regarding the contribution and impact of the coexistence of multiple heterogeneous networks and services is presented, verifying compliance with the current established international regulation limits with exposure levels far below the aforementioned limits. Finally, the proposed simulation technique is validated with a complete empirical campaign of measurements, showing good agreement. In consequence, the obtained datasets and simulation estimations, along with the proposed RF-EMF simulation tool, could be a reference approach for the design, deployment and exposure assessment of the current and future wireless communication technologies on the mmWave spectrum, where massive high-node density heterogeneous networks are expected.Project RTI2018-095499-B-C31 was funded by the Ministerio de Ciencia, Innovación y Universidades, Gobierno de España (MCIU/AEI/FEDER, UE). This project received funding from Universidad Carlos III de Madrid and the European Union's Horizon 2020 research and innovation programme under Marie Sklodowska-Curie Grant 801538

    Integration of mm-Wave Antenna Systems in 5G Mobile Terminals

    Get PDF

    Calculated Epithelial/Absorbed Power Density for Exposure from Antennas at 10–90 GHz: Intercomparison Study Using a Planar Skin Model

    Get PDF
    International audienceInternational organizations have collaborated to revise standards and guidelines for human protection from exposure to electromagnetic fields. In the frequency range of 6-300 GHz, the permissible spatially averaged epithelial/absorbed power density, which is primarily derived from thermal modeling, is considered as the basic restriction. However, for the averaging methods of the epithelial/absorbed power density inside human tissues, only a few groups have presented calculated results obtained using different exposure conditions and numerical methods. Because experimental validation is extremely difficult in this frequency range, this paper presents the first intercomparison study of the calculated epithelial/absorbed power density inside a human body model exposed to different frequency sources ranging from 10-90 GHz. This intercomparison aims to clarify the difference in the calculated results caused by different numerical electromagnetic methods in dosimetry analysis from 11 research groups using planar skin models. To reduce the comparison variances caused by various key parameters, computational conditions (e.g., the antenna type, dimensions, and dielectric properties of the skin models) were unified. The results indicate that the maximum relative standard deviation (RSD) of the peak spatially averaged epithelial/absorbed power densities for one- and three-layer skin models are less than 17.49% and 17.39%, respectively, when using a dipole antenna as the exposure source. For the dipole array antenna, the corresponding maximum RSD increases to 32.49% and 42.55%, respectively. Under the considered exposure scenarios, the RSD in the spatially averaged epithelial/absorbed power densities decrease from 42.55% to 16.7% when the frequency is increased from 10-90 GHz. Furthermore, the deviation from the two equations recommended by the exposure guidelines for deriving the spatially averaged epithelial/absorptive power density is mostly within 1 dB. The fair agreement in the intercomparison results demonstrates that the variances of the spatially averaged epithelial/absorbed power densities calculated using planar skin models are marginal
    corecore