408 research outputs found

    Vertical Jump: Biomechanical Analysis and Simulation Study

    Get PDF

    Biarticular Actuation of Robotic Systems

    Get PDF

    Spread enhancement for firefly algorithm with application to control mechanism of exoskeleton system

    Get PDF
    Firefly algorithm (FA) is a swarm intelligence based algorithm for global optimization and has widely been used in solving problems in many areas. The FA is good at exploring the search space and locating the global optimum, but it always gets trapped at local optimum especially in case of high dimensional problems. In order to overcome such drawbacks of FA, this paper proposes a modified variant of FA, referred to as spread enhancement strategy for firefly algorithm (SE-FA), by devising a nonlinear adaptive spread mechanism for the control parameters of the algorithm. The performance of the proposed algorithm is compared with the original FA and one variant of FA on six benchmark functions. Experimental and statistical results of the approach show better solutions in terms of reliability and convergence speed than the original FA especially in the case of high-dimensional problems. The algorithms are further tested with control of dynamic systems. The systems considered comprise assistive exoskeletons mechanism for upper and lower extremities. The performance results are evaluated in comparison to the original firefly and invasive weed algorithms. It is demonstrated that the proposed approaches are superior over the individual algorithms in terms of efficiency, convergence speed and quality of the optimal solution achieved

    Current sensing feedback for humanoid stability

    Get PDF
    For humanoid robots to function in changing environments, they must be able to maintain balance similar to human beings. At present, humanoids recover from pushes by the use of either the ankles or hips and a rigid body. This method has been proven to work, but causes excessive strain on the joints of the robot and does not maximize on the capabilities of a humanlike body. The focus of this paper is to enable advanced dynamic balancing through torque classification and balance improving positional changes. For the robot to be able to balance dynamically, external torques must be determined accurately. The proposed method of this paper uses current sensing feedback at the humanoids power source to classify external torques. Through understanding the current draw of each joint, an external torque can be modeled. After being modeled, the external torque can be nullified with balancing techniques. Current sensing has the advantage that it adds detailed feedback while requiring small adjustments to the robot. Also, current sensing minimizes additional sensors, cost, and weight to the robot. Current sensing technology lies between the power supply and drive motors, thus can be implement without altering the robot. After an external torque has been modeled, the robot will undertake balancing positions to reduce the instability. The specialized positions increase the robot\u27s balance while reducing the workload of each joint. The balancing positions incorporate the humanlike body of the robot and torque from each of the leg servos. The best balancing positions were generated with a genetic algorithm and simulated in Webots. The simulation environment provided an accurate physical model and physics engine. The genetic algorithm reduced the workload of searching the workspace of a robot with ten degrees of freedom below the waist. The current sensing theory was experimentally tested on the TigerBot, a humanoid produced by the Rochester Institute of Technology (RIT). The TigerBot has twenty three degrees of freedom that fully simulate human motion. The robot stands at thirty-one inches tall and weighs close to nine pounds. The legs of the robot have six degrees of freedom per leg, which fully mimics the human leg. The robot was awarded first place in the 2012 IEEE design competition for innovation in New York

    Biarticular Actuation of Robotic Systems

    Get PDF

    Humanoid Robots

    Get PDF
    For many years, the human being has been trying, in all ways, to recreate the complex mechanisms that form the human body. Such task is extremely complicated and the results are not totally satisfactory. However, with increasing technological advances based on theoretical and experimental researches, man gets, in a way, to copy or to imitate some systems of the human body. These researches not only intended to create humanoid robots, great part of them constituting autonomous systems, but also, in some way, to offer a higher knowledge of the systems that form the human body, objectifying possible applications in the technology of rehabilitation of human beings, gathering in a whole studies related not only to Robotics, but also to Biomechanics, Biomimmetics, Cybernetics, among other areas. This book presents a series of researches inspired by this ideal, carried through by various researchers worldwide, looking for to analyze and to discuss diverse subjects related to humanoid robots. The presented contributions explore aspects about robotic hands, learning, language, vision and locomotion

    Robotic design and modelling of medical lower extremity exoskeletons

    Get PDF
    This study aims to explain the development of the robotic Lower Extremity Exoskeleton (LEE) systems between 1960 and 2019 in chronological order. The scans performed in the exoskeleton system’s design have shown that a modeling program, such as AnyBody, and OpenSim, should be used first to observe the design and software animation, followed by the mechanical development of the system using sensors and motors. Also, the use of OpenSim and AnyBody musculoskeletal system software has been proven to play an essential role in designing the human-exoskeleton by eliminating the high costs and risks of the mechanical designs. Furthermore, these modeling systems can enable rapid optimization of the LEE design by detecting the forces and torques falling on the human muscles

    Compliant Control of Multicontact and Center-of-Mass Behaviors in Humanoid Robots

    Full text link

    Design and Development of a Robot Guided Rehabilitation Scheme for Upper Extremity Rehabilitation

    Get PDF
    To rehabilitate individuals with impaired upper-limb function, we have designed and developed a robot guided rehabilitation scheme. A humanoid robot, NAO was used for this purpose. NAO has 25 degrees of freedom. With its sensors and actuators, it can walk forward and backward, can sit down and stand up, can wave his hand, can speak to the audience, can feel the touch sensation, and can recognize the person he is meeting. All these qualities have made NAO a perfect coach to guide the subjects to perform rehabilitation exercises. To demonstrate rehabilitation exercises with NAO, a library of recommended rehabilitation exercises involving shoulder (i.e., abduction/adduction, vertical flexion/extension, and internal/external rotation), and elbow (i.e., flexion/extension) joint movements was formed in Choregraphe (graphical programming interface). In experiments, NAO was maneuvered to instruct and demonstrate the exercises from the NRL. A complex ‘touch and play’ game was also developed where NAO plays with the subject that represents a multi-joint movement’s exercise. To develop the proposed tele-rehabilitation scheme, kinematic model of human upper-extremity was developed based modified Denavit-Hartenberg notations. A complete geometric solution was developed to find a unique inverse kinematic solution of human upper-extremity from the Kinect data. In tele-rehabilitation scheme, a therapist can remotely tele-operate the NAO in real-time to instruct and demonstrate subjects different arm movement exercises. Kinect sensor was used in this scheme to get tele-operator’s kinematics data. Experiments results reveals that NAO can be tele-operated successfully to instruct and demonstrate subjects to perform different arm movement exercises. A control algorithm was developed in MATLAB for the proposed robot guided supervised rehabilitation scheme. Experimental results show that the NAO and Kinect sensor can effectively be used to supervise and guide the subjects in performing active rehabilitation exercises for shoulder and elbow joint movements
    corecore