770 research outputs found

    New techniques for spectral image acquisition and analysis

    Get PDF

    Pattern identification of biomedical images with time series: contrasting THz pulse imaging with DCE-MRIs

    Get PDF
    Objective We provide a survey of recent advances in biomedical image analysis and classification from emergent imaging modalities such as terahertz (THz) pulse imaging (TPI) and dynamic contrast-enhanced magnetic resonance images (DCE-MRIs) and identification of their underlining commonalities. Methods Both time and frequency domain signal pre-processing techniques are considered: noise removal, spectral analysis, principal component analysis (PCA) and wavelet transforms. Feature extraction and classification methods based on feature vectors using the above processing techniques are reviewed. A tensorial signal processing de-noising framework suitable for spatiotemporal association between features in MRI is also discussed. Validation Examples where the proposed methodologies have been successful in classifying TPIs and DCE-MRIs are discussed. Results Identifying commonalities in the structure of such heterogeneous datasets potentially leads to a unified multi-channel signal processing framework for biomedical image analysis. Conclusion The proposed complex valued classification methodology enables fusion of entire datasets from a sequence of spatial images taken at different time stamps; this is of interest from the viewpoint of inferring disease proliferation. The approach is also of interest for other emergent multi-channel biomedical imaging modalities and of relevance across the biomedical signal processing community

    Segmentation in dermatological hyperspectral images: dedicated methods

    Get PDF
    Background: Segmentation of hyperspectral medical images is one of many image segmentation methods which require profiling. This profiling involves either the adjustment of existing, known image segmentation methods or a proposal of new dedicated methods of hyperspectral image segmentation. Taking into consideration the size of analysed data, the time of analysis is of major importance. Therefore, the authors proposed three new dedicated methods of hyperspectral image segmentation with special reference to the time of analysis. Methods: The segmentation methods presented in this paper were tested and profiled to the images acquired from different hyperspectral cameras including SOC710 Hyperspectral Imaging System, Specim sCMOS-50-V10E. Correct functioning of the method was tested for over 10,000 2D images constituting the sequence of over 700 registrations of the areas of the left and right hand and the forearm. Results: As a result, three new methods of hyperspectral image segmentation have been proposed: fast analysis of emissivity curves (SKE), 3D segmentation (S3D) and hierarchical segmentation (SH). They have the following features: are fully automatic; allow for implementation of fast segmentation methods; are profiled to hyperspectral image segmentation; use emissivity curves in the model form, can be applied in any type of objects not necessarily biological ones, are faster (SKE-2.3 ms, S3D-1949 ms, SH-844 ms for the computer with Intel® Core i7 4960X CPU 3.6 GHz) and more accurate (SKE-accuracy 79 %, S3D-90 %, SH-92 %) in comparison with typical methods known from the literature. Conclusions: Profiling and/or proposing new methods of hyperspectral image segmentation is an indispensable element of developing software. This ensures speed, repeatability and low sensitivity of the algorithm to changing parameters

    Skin lesion evaluation from multispectral images

    Get PDF
    During evaluation of skin disease treatments, dermatologists have to clinically measure the pathology severity of each patient during treatment periods. Such a process is sensitive to intra- and inter- dermatologist diagnosis. To make this severity measurement more robust we propose to use image processing to quantify the pathology severity. We focus on a hyperpigmentation disorder called melasma. During a treatment period, multispectral images are taken on patients receiving the same treatment. After co-registration and classification steps, we propose algorithms to measure the intensity, the size and the homogeneity evolution of the pathological area. Obtained results are compared with a dermatologist diagnosis using statistical tests on a full clinical study

    Assessing skin lesion evolution from multispectral image sequences

    Get PDF
    During the evaluation of skin disease treatments, dermatologists have to clinically measure the evolution of the pathology severity of each patient during treatment periods. Such a process is sensitive to intra- and inter- dermatologist diagnosis. To make this severity measurement more objective we quantify the pathology severity using a new image processing based method. We focus on a hyperpigmentation disorder called melasma. During a treatment period, multispectral images are taken on patients receiving the same treatment. After co-registration and segmentation steps, we propose an algorithm to measure the intensity, the size and the homogeneity evolution of the pathological areas. Obtained results are compared with a dermatologist diagnosis using statistical tests on two clinical studies containing respectively 384 images from 16 patients and 352 images from 22 patients.This research report is an update of the report 8136. It describes methods and experiments in more details and provides more references.Lors de l'évaluation des traitements des maladies de peau, les dermatologues doivent mesurer la sévérité de la pathologie de chaque patient tout au long d'une période de traitement. Un tel procédé est sensible aux variations intra- et inter- dermatologues. Pour rendrecette mesure de sévérité plus robuste, nous proposons d'utiliser l'imagerie spectrale. Nous nous concentrons sur une pathologie d'hyperpigmentation cutanée appelée mélasma. Au cours d'une période de traitement, des images multispectrales sont acquises sur une population de patients sous traitement. Après des étapes de recalage des séries temporelles d'images et de classification des régions d'intérêt, nous proposons une méthodologie permettant de mesurer, dans le temps, la variation de contraste, de surface et d'homogénéité de la zone pathologique pour chaque patient. Les résultats obtenus sont comparés à un diagnostique clinique à l'aide de tests statistiques réalisés sur une étude clinique complète.Ce rapport de recherche est un complément du rapport de recherche 8136, afin de compléter la bibliographie, et de décrire plus en détail les méthodes et résultat

    Hyperspectral Imaging and Their Applications in the Nondestructive Quality Assessment of Fruits and Vegetables

    Get PDF
    Over the past decade, hyperspectral imaging has been rapidly developing and widely used as an emerging scientific tool in nondestructive fruit and vegetable quality assessment. Hyperspectral imaging technique integrates both the imaging and spectroscopic techniques into one system, and it can acquire a set of monochromatic images at almost continuous hundreds of thousands of wavelengths. Many researches based on spatial image and/or spectral image processing and analysis have been published proposing the use of hyperspectral imaging technique in the field of quality assessment of fruits and vegetables. This chapter presents a detailed overview of the introduction, latest developments and applications of hyperspectral imaging in the nondestructive assessment of fruits and vegetables. Additionally, the principal components, basic theories, and corresponding processing and analytical methods are also reported in this chapter

    Towards Addressing Key Visual Processing Challenges in Social Media Computing

    Get PDF
    abstract: Visual processing in social media platforms is a key step in gathering and understanding information in the era of Internet and big data. Online data is rich in content, but its processing faces many challenges including: varying scales for objects of interest, unreliable and/or missing labels, the inadequacy of single modal data and difficulty in analyzing high dimensional data. Towards facilitating the processing and understanding of online data, this dissertation primarily focuses on three challenges that I feel are of great practical importance: handling scale differences in computer vision tasks, such as facial component detection and face retrieval, developing efficient classifiers using partially labeled data and noisy data, and employing multi-modal models and feature selection to improve multi-view data analysis. For the first challenge, I propose a scale-insensitive algorithm to expedite and accurately detect facial landmarks. For the second challenge, I propose two algorithms that can be used to learn from partially labeled data and noisy data respectively. For the third challenge, I propose a new framework that incorporates feature selection modules into LDA models.Dissertation/ThesisDoctoral Dissertation Computer Science 201
    • …
    corecore