2,267 research outputs found

    Applying product design methods to medical device design with a case study on home care devices

    Get PDF
    Thesis (Master)--Izmir Institute of Technology, Industrial Design, Izmir, 2004Includes bibliographical references (leaves: 142)Text in English; Abstract: Turkish and Englishxii, 150 leavesMedical device design is one of the most important and most promising fields of industrial design. Medical devices, which were once designed by doctors, technicians and other people, who usually use such devices, have become insufficient in meeting the needs of today.s. In this respect, design of such devices and methods, which are used in the design process, comes away as main topics, which have to be carefully undertaken.Product design methods have the capacity of solving the problems of medical device design field, as they have in many other fields. In this study, the ways of applying these methods into the medical device design process, especially in home care medical device design, are going to be examined

    Physical Activity and Exercise with Blood Flow Restriction as Medicine During the COVID-19 Pandemic and Beyond

    Get PDF
    During the COVID-19 pandemic, physical activity levels have decreased and sitting time has increased. This is a major concern as physical inactivity increases the risk for severe COVID-19 outcomes. Evidence also indicates that COVID-19 survivors can experience reduced physical function (i.e., ability to complete daily living activities) long after acute illness. Currently, there are no evidence-based guidelines for recovering physical function following COVID-19 infection. Exercise with blood flow restriction (BFR) presents a promising rehabilitation strategy as the benefits of traditional exercise can be achieved using lower intensities. However, several barriers such as cost, access to equipment, and lack of standardized methods limit its use. The goal of this research was to promote and facilitate the use of physical activity as a critical form of medicine during the COVID-19 pandemic and beyond. With study 1, I implemented a community-based program to provide free physical activity resources to the rural Upper Peninsula during the pandemic. Physical activity was promoted through a widespread media campaign and over 260 virtual home-based workouts were delivered to community members using several platforms (i.e., Zoom, Facebook Live, YouTube, TV, DVD). With study 2, I developed a working hypothesis and theoretical framework for using BFR to help restore physical function in those individuals infected with COVID-19. Specifically, I hypothesized that passive BFR modalities can mitigate losses of muscle mass and muscle strength that occur during acute infection and 2) exercise with BFR can serve as an effective alternative to traditional higher intensity exercise for regaining muscle mass, muscle strength, and aerobic capacity during convalescence. With study 3, I collected laboratory-based measures using Doppler ultrasound and anthropometric techniques in healthy adults (n=143) and applied linear regression methods to develop and validate a prediction equation for performing BFR without the need for specialized equipment. Finally, with study 4, I developed and usability tested a web-based application designed to serve as user support tool that aids physical therapists in implementing BFR. Collectively, my research addressed two major public health problems (COVID-19 and physical inactivity) and sought to enhance accessibility of physical activity and exercise with BFR during the pandemic and beyond

    Technologies to support community-dwelling persons with dementia: a position paper on issues regarding development, usability, effectiveness and cost-effectiveness, deployment, and ethics

    Get PDF
    Background: With the expected increase in the numbers of persons with dementia, providing timely, adequate, and affordable care and support is challenging. Assistive and health technologies may be a valuable contribution in dementia care, but new challenges may emerge. Objective: The aim of our study was to review the state of the art of technologies for persons with dementia regarding issues on development, usability, effectiveness and cost-effectiveness, deployment, and ethics in 3 fields of application of technologies: (1) support with managing everyday life, (2) support with participating in pleasurable and meaningful activities, and (3) support with dementia health and social care provision. The study also aimed to identify gaps in the evidence and challenges for future research. Methods: Reviews of literature and expert opinions were used in our study. Literature searches were conducted on usability, effectiveness and cost-effectiveness, and ethics using PubMed, Embase, CINAHL, and PsycINFO databases with no time limit. Selection criteria in our selected technology fields were reviews in English for community-dwelling persons with dementia. Regarding deployment issues, searches were done in Health Technology Assessment databases Results: According to our results, persons with dementia want to be included in the development of technologies; there is little research on the usability of assistive technologies; various benefits are reported but are mainly based on low-quality studies; barriers to deployment of technologies in dementia care were identified, and ethical issues were raised by researchers but often not studied. Many challenges remain such as including the target group more often in development, performing more high-quality studies on usability and effectiveness and cost-effectiveness, creating and having access to high-quality datasets on existing technologies to enable adequate deployment of technologies in dementia care, and ensuring that ethical issues are considered an important topic for researchers to include in their evaluation of assistive technologies. Conclusions: Based on these findings, various actions are recommended for development, usability, effectiveness and cost-effectiveness, deployment, and ethics of assistive and health technologies across Europe. These include avoiding replication of technology development that is unhelpful or ineffective and focusing on how technologies succeed in addressing individual needs of persons with dementia. Furthermore, it is suggested to include these recommendations in national and international calls for funding and assistive technology research programs. Finally, practitioners, policy makers, care insurers, and care providers should work together with technology enterprises and researchers to prepare strategies for the implementation of assistive technologies in different care settings. This may help future generations of persons with dementia to utilize available and affordable technologies and, ultimately, to benefit from them

    Supporting the Quadruple Aim Using Simulation and Human Factors During COVID-19 Care

    Get PDF
    This article is made available for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.The health care sector has made radical changes to hospital operations and care delivery in response to the coronavirus disease (COVID-19) pandemic. This article examines pragmatic applications of simulation and human factors to support the Quadruple Aim of health system performance during the COVID-19 era. First, patient safety is enhanced through development and testing of new technologies, equipment, and protocols using laboratory-based and in situ simulation. Second, population health is strengthened through virtual platforms that deliver telehealth and remote simulation that ensure readiness for personnel to deploy to new clinical units. Third, prevention of lost revenue occurs through usability testing of equipment and computer-based simulations to predict system performance and resilience. Finally, simulation supports health worker wellness and satisfaction by identifying optimal work conditions that maximize productivity while protecting staff through preparedness training. Leveraging simulation and human factors will support a resilient and sustainable response to the pandemic in a transformed health care landscape
    corecore