779 research outputs found

    Nanomaterials for Healthcare Biosensing Applications

    Get PDF
    In recent years, an increasing number of nanomaterials have been explored for their applications in biomedical diagnostics, making their applications in healthcare biosensing a rapidly evolving field. Nanomaterials introduce versatility to the sensing platforms and may even allow mobility between different detection mechanisms. The prospect of a combination of different nanomaterials allows an exploitation of their synergistic additive and novel properties for sensor development. This paper covers more than 290 research works since 2015, elaborating the diverse roles played by various nanomaterials in the biosensing field. Hence, we provide a comprehensive review of the healthcare sensing applications of nanomaterials, covering carbon allotrope-based, inorganic, and organic nanomaterials. These sensing systems are able to detect a wide variety of clinically relevant molecules, like nucleic acids, viruses, bacteria, cancer antigens, pharmaceuticals and narcotic drugs, toxins, contaminants, as well as entire cells in various sensing media, ranging from buffers to more complex environments such as urine, blood or sputum. Thus, the latest advancements reviewed in this paper hold tremendous potential for the application of nanomaterials in the early screening of diseases and point-of-care testing

    Rational Design of Flexible and Stretchable Electronics based on 3D Printing

    Get PDF
    Flexible and stretchable electronics have been considered as the key component for the next generation of flexible devices. There are many approaches to prepare the devices, such as dip coating, spin coating, Mayer bar coating, filtration and transfer, and printing, etc. The effectiveness of these methods has been proven, but some drawbacks cannot be ignored, such as lacking pattern control, labor consuming, requiring complex pretreatment, wasting conductive materials, etc. In this investigation, we propose to adopt 3D printing technology to design flexible and stretchable electronics. The objective is to rationally design flexible and stretchable sensors, simplify the preparation process, form the sample with the complex desirable patterns, and promote the performance of the samples. The dissertation comprises of three major parts: water-induced polymer swelling and its application in soft electronics, utilizing 3D printing to transfer conductive layer into elastomer for building soft electronics, and 3D printing of functional devices. In the first part, we developed the soft electronics with wrinkled structure via 3D printing and water-induced polymer swelling, which can avoid some disadvantages in conventional method, e.g., pre-stretching and organic solvent-induced polymer swelling, including mechanical loss, negative effect to human health, and unidirectionally response to external deformation. Water-induced polymer swelling was achieved by introducing soluble particles into silicone matrixes and soaking the polymer composites in aqueous solution. We have investigated the characteristics and mechanisms of water-induced polymer swelling. Then, the conductive materials were deposited on the swollen sample to form the desired wrinkled structures for stretchable sensors. Furthermore, a dopamine layer was adopted to enhance the adhesion of matrix and conductive layer. The improvement was a key enabler to achieve superior electrical properties of 3D printed stretchable sensors for long-term cyclic stretching. We have demonstrated a series of human motion detection by using these stretchable strain sensors. Another part is designing flexible electrodes with desirable complex pattern by transferring a conductive layer into soft substrates during a 3D printing process. Taking advantage of extrusion pressure and polymer adhesion, the thin conductive layers were embedded into the printed polymer patterns, which can achieve conductive flexible electronics with desirable complex patterns. High-quality transfer has been achieved through adjusting conductive layer thickness, nozzle-to-substrate distance, and printing parameters, etc. Moreover, various printing patterns were created, and their properties were exhibited. The stretchable sensors showed an outstanding stress-strain relationship and electrical response to external deformations. The third part is about 3D printing of functional devices. In the collaborated study, the drug particles were introduced into silicone matrix to prepare the drug-eluting devices. When water molecules transported into the silicone matrix, the loaded drug particles decomposed and released nitric oxide (NO) enabling antibacterial properties. It is noted that 3D printing is creatively employed to form the desirable patterns. We also observed a self-wiring effect in the printing process, i.e., the printed device is covered by a drug-free layer due to the diffusion of a low viscosity silicone component during printing, which can be utilized to prevent drug release bursts and to form a gradient drug-loaded device. The printed samples showed a sustainable NO release and good antibacterial property. Furthermore, the water-induced polymer swelling was possible to be used as actuator in humidity environment. There are some highlights deserving emphasis in the dissertation. Firstly, the water-induced polymer swelling is proposed to develop the flexible and stretchable electronics. The findings have a wide potential application. Additionally, a drug-eluting polymer device with a drug-loaded bulk and a drug-free coating is prepared via leveraging self-wiring effect in 3D printing. The structure can regulate the drug release rate. On the other hand, the additive manufacturing platform offers unique opportunities to produce drug-eluting silicone devices in a customized manner. Finally, 3D printing is employed to encapsulate the conductive layers to achieve the flexible electronics with patterned structure and high performances. The facile and effective approach provides a distinctive view in advancing the development of stretchable electronics

    Reinforcement of polypropylene with alkali-treated sugarcane bagasse fibers: Mechanism and consequences

    Get PDF
    Polypropylene composites were prepared from neat and alkali-treated sugarcane bagasse fibers. The results showed that alkali treatment leads to an increase in composite stiffness and strength. A maximum is achieved in these properties at around 5 wt% NaOH content of the treating solution. The increase in properties was assigned to the improvement in inherent fiber characteristics. Acoustic emission testing and electron microscopy showed that the two main local deformation processes related to the fibers are their fracture and debonding; the latter is accompanied by the shear yielding of the matrix. Increased inherent strength of the fibers results in an increase in the fracture initiation stress and fracture energy of the composites. Interfacial adhesion has a slight effect on stiffness, but more significant on strength and impact resistance. Changing adhesion modifies the relative importance of local deformation processes, the number of debonding events decreases, while fiber fracture increases with increasing adhesion. Increased interfacial adhesion improves stress transfer and the load bearing capacity of the fibers as well, but suppresses matrix yielding. Alkali treatment increases inherent fiber strength, which can be directly correlated with composite strength

    Review—Non-Invasive Monitoring of Human Health by Exhaled Breath Analysis: A Comprehensive Review

    Get PDF
    Exhaled human breath analysis is a very promisingfield of research work having great potential for diagnosis of diseases in non-invasive way. Breath analysis has attracted huge attention in thefield of medical diagnosis and disease monitoring in the last twodecades. VOCs/gases (Volatile Organic Compounds) in exhaled breath bear thefinger-prints of metabolic and biophysicalprocesses going on in human body. It’s a non-invasive, fast, non-hazardous, cost effective, and point of care process for diseasestate monitoring and environmental exposure assessment in human beings. Some VOCs/gases in exhaled breath are bio-markers ofdifferent diseases and their presence in excess amount is indicative of un-healthiness. Breath analysis has the potential for earlydetection of diseases. However, it is still underused and commercial device is yet not available owing to multiferrious challenges.This review is intended to provide an overview of major biomarkers (VOCs/gases) present in exhaled breath, importance of theiranalysis towards disease monitoring, analytical techniques involved, promising materials for breath analysis etc. Finally, relatedchallenges and limitations along with future scope will be touched upon.will be touched upon

    All-in-Fiber Electrochemical Sensing

    Get PDF
    Electrochemical sensors have found a wide range of applications in analytical chemistry thanks to the advent of high-throughput printing technologies. However, these techniques are usually limited to two-dimensional (2D) geometry with relatively large minimal feature sizes. Here, we report on the scalable fabrication of monolithically integrated electrochemical devices with novel and customizable fiber-based architectures. The multimaterial thermal drawing technique is employed to co-process polymer composites and metallic glass into uniform electroactive and pseudoreference electrodes embedded in an insulating polymer cladding fiber. To demonstrate the versatility of the process, we tailor the fiber microstructure to two configurations: a small-footprint fiber tip sensor and a high-surface-area capillary cell. We demonstrate the performance of our devices using cyclic voltammetry and chronoamperometry for the direct detection and quantification of paracetamol, a common anesthetic drug. Finally, we showcase a fully portable pipet-based analyzer using low-power electronics and an "electrochemical pipet tip" for direct sampling and analysis of microliter-range volumes. Our approach paves the way toward novel materials and architectures for efficient electrochemical sensing to be deployed in existing and novel personal care and surgical configurations

    Recent advances in plasmonic sensor-based fiber optic probes for biological applications

    Get PDF
    Funding: This research was funded by National Natural Science Foundation of China (NSFC), grant number [61675008]. Acknowledgments: KN wishes to thank The Royal Society Kan Tong Po International Fellowship 2018 for the travel fund to visit Hong Kong Polytechnic University and Shenzhen Science and Technology Innovation Commission (Project GJHZ20180411185015272).Peer reviewedPublisher PD

    21st Century Nanostructured Materials

    Get PDF
    Nanostructured materials (NMs) are attracting interest as low-dimensional materials in the high-tech era of the 21st century. Recently, nanomaterials have experienced breakthroughs in synthesis and industrial and biomedical applications. This book presents recent achievements related to NMs such as graphene, carbon nanotubes, plasmonic materials, metal nanowires, metal oxides, nanoparticles, metamaterials, nanofibers, and nanocomposites, along with their physical and chemical aspects. Additionally, the book discusses the potential uses of these nanomaterials in photodetectors, transistors, quantum technology, chemical sensors, energy storage, silk fibroin, composites, drug delivery, tissue engineering, and sustainable agriculture and environmental applications
    • …
    corecore