1,974 research outputs found

    SPEAKER AND GENDER IDENTIFICATION USING BIOACOUSTIC DATA SETS

    Get PDF
    Acoustic analysis of animal vocalizations has been widely used to identify the presence of individual species, classify vocalizations, identify individuals, and determine gender. In this work automatic identification of speaker and gender of mice from ultrasonic vocalizations and speaker identification of meerkats from their Close calls is investigated. Feature extraction was implemented using Greenwood Function Cepstral Coefficients (GFCC), designed exclusively for extracting features from animal vocalizations. Mice ultrasonic vocalizations were analyzed using Gaussian Mixture Models (GMM) which yielded an accuracy of 78.3% for speaker identification and 93.2% for gender identification. Meerkat speaker identification with Close calls was implemented using Gaussian Mixture Models (GMM) and Hidden Markov Models (HMM), with an accuracy of 90.8% and 94.4% respectively. The results obtained shows these methods indicate the presence of gender and identity information in vocalizations and support the possibility of robust gender identification and individual identification using bioacoustic data sets

    Evaluation of preprocessors for neural network speaker verification

    Get PDF

    PHONOTACTIC AND ACOUSTIC LANGUAGE RECOGNITION

    Get PDF
    Práce pojednává o fonotaktickém a akustickém přístupu pro automatické rozpoznávání jazyka. První část práce pojednává o fonotaktickém přístupu založeném na výskytu fonémových sekvenci v řeči. Nejdříve je prezentován popis vývoje fonémového rozpoznávače jako techniky pro přepis řeči do sekvence smysluplných symbolů. Hlavní důraz je kladen na dobré natrénování fonémového rozpoznávače a kombinaci výsledků z několika fonémových rozpoznávačů trénovaných na různých jazycích (Paralelní fonémové rozpoznávání následované jazykovými modely (PPRLM)). Práce také pojednává o nové technice anti-modely v PPRLM a studuje použití fonémových grafů místo nejlepšího přepisu. Na závěr práce jsou porovnány dva přístupy modelování výstupu fonémového rozpoznávače -- standardní n-gramové jazykové modely a binární rozhodovací stromy. Hlavní přínos v akustickém přístupu je diskriminativní modelování cílových modelů jazyků a první experimenty s kombinací diskriminativního trénování a na příznacích, kde byl odstraněn vliv kanálu. Práce dále zkoumá různé druhy technik fúzi akustického a fonotaktického přístupu. Všechny experimenty jsou provedeny na standardních datech z NIST evaluaci konané v letech 2003, 2005 a 2007, takže jsou přímo porovnatelné s výsledky ostatních skupin zabývajících se automatickým rozpoznáváním jazyka. S fúzí uvedených technik jsme posunuli state-of-the-art výsledky a dosáhli vynikajících výsledků ve dvou NIST evaluacích.This thesis deals with phonotactic and acoustic techniques for automatic language recognition (LRE). The first part of the thesis deals with the phonotactic language recognition based on co-occurrences of phone sequences in speech. A thorough study of phone recognition as tokenization technique for LRE is done, with focus on the amounts of training data for phone recognizer and on the combination of phone recognizers trained on several language (Parallel Phone Recognition followed by Language Model - PPRLM). The thesis also deals with novel technique of anti-models in PPRLM and investigates into using phone lattices instead of strings. The work on phonotactic approach is concluded by a comparison of classical n-gram modeling techniques and binary decision trees. The acoustic LRE was addressed too, with the main focus on discriminative techniques for training target language acoustic models and on initial (but successful) experiments with removing channel dependencies. We have also investigated into the fusion of phonotactic and acoustic approaches. All experiments were performed on standard data from NIST 2003, 2005 and 2007 evaluations so that the results are directly comparable to other laboratories in the LRE community. With the above mentioned techniques, the fused systems defined the state-of-the-art in the LRE field and reached excellent results in NIST evaluations.

    Discriminative features for GMM and i-vector based speaker diarization

    Get PDF
    Speaker diarization has received several research attentions over the last decade. Among the different domains of speaker diarization, diarization in meeting domain is the most challenging one. It usually contains spontaneous speech and is, for example, susceptible to reverberation. The appropriate selection of speech features is one of the factors that affect the performance of speaker diarization systems. Mel Frequency Cepstral Coefficients (MFCC) are the most widely used short-term speech features in speaker diarization. Other factors that affect the performance of speaker diarization systems are the techniques employed to perform both speaker segmentation and speaker clustering. In this thesis, we have proposed the use of jitter and shimmer long-term voice-quality features both for Gaussian Mixture Modeling (GMM) and i-vector based speaker diarization systems. The voice-quality features are used together with the state-of-the-art short-term cepstral and long-term speech ones. The long-term features consist of prosody and Glottal-to-Noise excitation ratio (GNE) descriptors. Firstly, the voice-quality, prosodic and GNE features are stacked in the same feature vector. Then, they are fused with cepstral coefficients at the score likelihood level both for the proposed Gaussian Mixture Modeling (GMM) and i-vector based speaker diarization systems. For the proposed GMM based speaker diarization system, independent HMM models are estimated from the short-term and long-term speech feature sets. The fusion of the short-term descriptors with the long-term ones in speaker segmentation is carried out by linearly weighting the log-likelihood scores of Viterbi decoding. In the case of speaker clustering, the fusion of the short-term cepstral features with the long-term ones is carried out by linearly fusing the Bayesian Information Criterion (BIC) scores corresponding to these feature sets. For the proposed i-vector based speaker diarization system, the speaker segmentation is carried out exactly the same as in the previously mentioned GMM based speaker diarization system. However, the speaker clustering technique is based on the recently introduced factor analysis paradigm. Two set of i-vectors are extracted from the speaker segmentation hypothesis. Whilst the first i-vector is extracted from short-term cepstral features, the second one is extracted from the voice quality, prosody and GNE descriptors. Then, the cosine-distance and Probabilistic Linear Discriminant Analysis (PLDA) scores of i-vectors are linearly weighted to obtain a fused similarity score. Finally, the fused score is used as speaker clustering distance. We have also proposed the use of delta dynamic features for speaker clustering. The motivation for using deltas in clustering is that delta dynamic features capture the transitional characteristics of the speech signal which contain speaker specific information. This information is not captured by the static cepstral coefficients. The delta features are used together with the short-term static cepstral coefficients and long-term speech features (i.e., voice-quality, prosody and GNE) both for GMM and i-vector based speaker diarization systems. The experiments have been carried out on Augmented Multi-party Interaction (AMI) meeting corpus. The experimental results show that the use of voice-quality, prosody, GNE and delta dynamic features improve the performance of both GMM and i-vector based speaker diarization systems.La diarización del altavoz ha recibido varias atenciones de investigación durante la última década. Entre los diferentes dominios de la diarización del hablante, la diarización en el dominio del encuentro es la más difícil. Normalmente contiene habla espontánea y, por ejemplo, es susceptible de reverberación. La selección apropiada de las características del habla es uno de los factores que afectan el rendimiento de los sistemas de diarización de los altavoces. Los Coeficientes Cepstral de Frecuencia Mel (MFCC) son las características de habla de corto plazo más utilizadas en la diarización de los altavoces. Otros factores que afectan el rendimiento de los sistemas de diarización del altavoz son las técnicas empleadas para realizar tanto la segmentación del altavoz como el agrupamiento de altavoces. En esta tesis, hemos propuesto el uso de jitter y shimmer características de calidad de voz a largo plazo tanto para GMM y i-vector basada en sistemas de diarización de altavoces. Las características de calidad de voz se utilizan junto con el estado de la técnica a corto plazo cepstral y de larga duración de habla. Las características a largo plazo consisten en la prosodia y los descriptores de relación de excitación Glottal-a-Ruido (GNE). En primer lugar, las características de calidad de voz, prosódica y GNE se apilan en el mismo vector de características. A continuación, se fusionan con coeficientes cepstrales en el nivel de verosimilitud de puntajes tanto para los sistemas de diarización de altavoces basados ¿¿en el modelo Gaussian Mixture Modeling (GMM) como en los sistemas basados ¿¿en i-vector. . Para el sistema de diarización de altavoces basado en GMM propuesto, se calculan modelos HMM independientes a partir de cada conjunto de características. En la segmentación de los altavoces, la fusión de los descriptores a corto plazo con los de largo plazo se lleva a cabo mediante la ponderación lineal de las puntuaciones log-probabilidad de decodificación Viterbi. En la agrupación de altavoces, la fusión de las características cepstrales a corto plazo con las de largo plazo se lleva a cabo mediante la fusión lineal de las puntuaciones Bayesian Information Criterion (BIC) correspondientes a estos conjuntos de características. Para el sistema de diarización de altavoces basado en un vector i, la fusión de características se realiza exactamente igual a la del sistema basado en GMM antes mencionado. Sin embargo, la técnica de agrupación de altavoces se basa en el paradigma de análisis de factores recientemente introducido. Dos conjuntos de i-vectores se extraen de la hipótesis de segmentación de altavoz. Mientras que el primer vector i se extrae de características espectrales a corto plazo, el segundo se extrae de los descriptores de calidad de voz apilados, prosódicos y GNE. A continuación, las puntuaciones de coseno-distancia y Probabilistic Linear Discriminant Analysis (PLDA) entre i-vectores se ponderan linealmente para obtener una puntuación de similitud fundida. Finalmente, la puntuación fusionada se utiliza como distancia de agrupación de altavoces. También hemos propuesto el uso de características dinámicas delta para la agrupación de locutores. La motivación para el uso de deltas en la agrupación es que las características dinámicas delta capturan las características de transición de la señal de voz que contienen información específica del locutor. Esta información no es capturada por los coeficientes cepstrales estáticos. Las características delta se usan junto con los coeficientes cepstrales estáticos a corto plazo y las características de voz a largo plazo (es decir, calidad de voz, prosodia y GNE) tanto para sistemas de diarización de altavoces basados en GMM como en sistemas i-vector. Los resultados experimentales sobre AMI muestran que el uso de calidad vocal, prosódica, GNE y dinámicas delta mejoran el rendimiento de los sistemas de diarización de altavoces basados en GMM e i-vector.Postprint (published version

    Automatic Identity Recognition Using Speech Biometric

    Get PDF
    Biometric technology refers to the automatic identification of a person using physical or behavioral traits associated with him/her. This technology can be an excellent candidate for developing intelligent systems such as speaker identification, facial recognition, signature verification...etc. Biometric technology can be used to design and develop automatic identity recognition systems, which are highly demanded and can be used in banking systems, employee identification, immigration, e-commerce…etc. The first phase of this research emphasizes on the development of automatic identity recognizer using speech biometric technology based on Artificial Intelligence (AI) techniques provided in MATLAB. For our phase one, speech data is collected from 20 (10 male and 10 female) participants in order to develop the recognizer. The speech data include utterances recorded for the English language digits (0 to 9), where each participant recorded each digit 3 times, which resulted in a total of 600 utterances for all participants. For our phase two, speech data is collected from 100 (50 male and 50 female) participants in order to develop the recognizer. The speech data is divided into text-dependent and text-independent data, whereby each participant selected his/her full name and recorded it 30 times, which makes up the text-independent data. On the other hand, the text-dependent data is represented by a short Arabic language story that contains 16 sentences, whereby every sentence was recorded by every participant 5 times. As a result, this new corpus contains 3000 (30 utterances * 100 speakers) sound files that represent the text-independent data using their full names and 8000 (16 sentences * 5 utterances * 100 speakers) sound files that represent the text-dependent data using the short story. For the purpose of our phase one of developing the automatic identity recognizer using speech, the 600 utterances have undergone the feature extraction and feature classification phases. The speech-based automatic identity recognition system is based on the most dominating feature extraction technique, which is known as the Mel-Frequency Cepstral Coefficient (MFCC). For feature classification phase, the system is based on the Vector Quantization (VQ) algorithm. Based on our experimental results, the highest accuracy achieved is 76%. The experimental results have shown acceptable performance, but can be improved further in our phase two using larger speech data size and better performance classification techniques such as the Hidden Markov Model (HMM)

    On adaptive decision rules and decision parameter adaptation for automatic speech recognition

    Get PDF
    Recent advances in automatic speech recognition are accomplished by designing a plug-in maximum a posteriori decision rule such that the forms of the acoustic and language model distributions are specified and the parameters of the assumed distributions are estimated from a collection of speech and language training corpora. Maximum-likelihood point estimation is by far the most prevailing training method. However, due to the problems of unknown speech distributions, sparse training data, high spectral and temporal variabilities in speech, and possible mismatch between training and testing conditions, a dynamic training strategy is needed. To cope with the changing speakers and speaking conditions in real operational conditions for high-performance speech recognition, such paradigms incorporate a small amount of speaker and environment specific adaptation data into the training process. Bayesian adaptive learning is an optimal way to combine prior knowledge in an existing collection of general models with a new set of condition-specific adaptation data. In this paper, the mathematical framework for Bayesian adaptation of acoustic and language model parameters is first described. Maximum a posteriori point estimation is then developed for hidden Markov models and a number of useful parameters densities commonly used in automatic speech recognition and natural language processing.published_or_final_versio

    Speech Recognition

    Get PDF
    Chapters in the first part of the book cover all the essential speech processing techniques for building robust, automatic speech recognition systems: the representation for speech signals and the methods for speech-features extraction, acoustic and language modeling, efficient algorithms for searching the hypothesis space, and multimodal approaches to speech recognition. The last part of the book is devoted to other speech processing applications that can use the information from automatic speech recognition for speaker identification and tracking, for prosody modeling in emotion-detection systems and in other speech processing applications that are able to operate in real-world environments, like mobile communication services and smart homes
    corecore