2,529 research outputs found

    Classification and Recovery of Radio Signals from Cosmic Ray Induced Air Showers with Deep Learning

    Full text link
    Radio emission from air showers enables measurements of cosmic particle kinematics and identity. The radio signals are detected in broadband Megahertz antennas among continuous background noise. We present two deep learning concepts and their performance when applied to simulated data. The first network classifies time traces as signal or background. We achieve a true positive rate of about 90% for signal-to-noise ratios larger than three with a false positive rate below 0.2%. The other network is used to clean the time trace from background and to recover the radio time trace originating from an air shower. Here we achieve a resolution in the energy contained in the trace of about 20% without a bias for 80%80\% of the traces with a signal. The obtained frequency spectrum is cleaned from signals of radio frequency interference and shows the expected shape.Comment: 20 pages, 13 figures, resubmitted to JINS

    Gravitational Wave Data Analysis: Computing Challenges in the 3G Era

    Get PDF
    Cyber infrastructure will be a critical consideration in the development of next generation gravitational-wave detectors. The demand for data analysis computing in the 3G era will be driven by the high number of detections as well as the expanded search parameter space for compact astrophysical objects and the subsequent parameter estimation follow-up required to extract the nature of the sources. Additionally, there will be an increased need to develop appropriate and scalable computing cyberinfrastructure, including data access and transfer protocols, and storage and management of software tools, that have sustainable development, support, and management processes. This report identifies the major challenges and opportunities facing 3G gravitational-wave observatories and presents recommendations for addressing them. This report is the fourth in a six part series of reports by the GWIC 3G Subcommittee: i) Expanding the Reach of Gravitational Wave Observatories to the Edge of the Universe, ii) The Next Generation Global Gravitational Wave Observatory: The Science Book, iii) 3G R&D: R&D for the Next Generation of Ground-based Gravitational Wave Detectors, iv) Gravitational Wave Data Analysis: Computing Challenges in the 3G Era (this report), v) Future Ground-based Gravitational-wave Observatories: Synergies with Other Scientific Communities, and vi) An Exploration of Possible Governance Models for the Future Global Gravitational-Wave Observatory Network

    Novel neural-network architecture for continuous gravitational waves

    Get PDF
    The high computational cost of wide-parameter-space searches for continuous gravitational waves (CWs) significantly limits the achievable sensitivity. This challenge has motivated the exploration of alternative search methods, such as deep neural networks (DNNs). Previous attempts [1,2] to apply convolutional image-classification DNN architectures to all-sky and directed CW searches showed promise for short, one-day search durations, but proved ineffective for longer durations of around ten days. In this paper, we offer a hypothesis for this limitation and propose new design principles to overcome it. As a proof of concept, we show that our novel convolutional DNN architecture attains matched-filtering sensitivity for a targeted search (i.e., single sky-position and frequency) in Gaussian data from two detectors spanning ten days. We illustrate this performance for two different sky positions and five frequencies in the 20-1000 Hz range, spanning the spectrum from an "easy"to the "hardest"case. The corresponding sensitivity depths fall in the range of 82-86/ Hz. The same DNN architecture is trained for each case, taking between 4-32 hours to reach matched-filtering sensitivity. The detection probability of the trained DNNs as a function of signal amplitude varies consistently with that of matched filtering. Furthermore, the DNN statistic distributions can be approximately mapped to those of the F-statistic under a simple monotonic function

    Neural network time-series classifiers for gravitational-wave searches in single-detector periods

    Full text link
    The search for gravitational-wave signals is limited by non-Gaussian transient noises that mimic astrophysical signals. Temporal coincidence between two or more detectors is used to mitigate contamination by these instrumental glitches. However, when a single detector is in operation, coincidence is impossible, and other strategies have to be used. We explore the possibility of using neural network classifiers and present the results obtained with three types of architectures: convolutional neural network, temporal convolutional network, and inception time. The last two architectures are specifically designed to process time-series data. The classifiers are trained on a month of data from the LIGO Livingston detector during the first observing run (O1) to identify data segments that include the signature of a binary black hole merger. Their performances are assessed and compared. We then apply trained classifiers to the remaining three months of O1 data, focusing specifically on single-detector times. The most promising candidate from our search is 2016-01-04 12:24:17 UTC. Although we are not able to constrain the significance of this event to the level conventionally followed in gravitational-wave searches, we show that the signal is compatible with the merger of two black holes with masses m1=50.7−8.9+10.4 M⊙m_1 = 50.7^{+10.4}_{-8.9}\,M_{\odot} and m2=24.4−9.3+20.2 M⊙m_2 = 24.4^{+20.2}_{-9.3}\,M_{\odot} at the luminosity distance of dL=564−338+812 Mpcd_L = 564^{+812}_{-338}\,\mathrm{Mpc}.Comment: 29 pages, 11 figures, submitted to CQ

    Workshop proceedings: Information Systems for Space Astrophysics in the 21st Century, volume 1

    Get PDF
    The Astrophysical Information Systems Workshop was one of the three Integrated Technology Planning workshops. Its objectives were to develop an understanding of future mission requirements for information systems, the potential role of technology in meeting these requirements, and the areas in which NASA investment might have the greatest impact. Workshop participants were briefed on the astrophysical mission set with an emphasis on those missions that drive information systems technology, the existing NASA space-science operations infrastructure, and the ongoing and planned NASA information systems technology programs. Program plans and recommendations were prepared in five technical areas: Mission Planning and Operations; Space-Borne Data Processing; Space-to-Earth Communications; Science Data Systems; and Data Analysis, Integration, and Visualization
    • …
    corecore