3,199 research outputs found

    A systematic comparison of supervised classifiers

    Get PDF
    Pattern recognition techniques have been employed in a myriad of industrial, medical, commercial and academic applications. To tackle such a diversity of data, many techniques have been devised. However, despite the long tradition of pattern recognition research, there is no technique that yields the best classification in all scenarios. Therefore, the consideration of as many as possible techniques presents itself as an fundamental practice in applications aiming at high accuracy. Typical works comparing methods either emphasize the performance of a given algorithm in validation tests or systematically compare various algorithms, assuming that the practical use of these methods is done by experts. In many occasions, however, researchers have to deal with their practical classification tasks without an in-depth knowledge about the underlying mechanisms behind parameters. Actually, the adequate choice of classifiers and parameters alike in such practical circumstances constitutes a long-standing problem and is the subject of the current paper. We carried out a study on the performance of nine well-known classifiers implemented by the Weka framework and compared the dependence of the accuracy with their configuration parameter configurations. The analysis of performance with default parameters revealed that the k-nearest neighbors method exceeds by a large margin the other methods when high dimensional datasets are considered. When other configuration of parameters were allowed, we found that it is possible to improve the quality of SVM in more than 20% even if parameters are set randomly. Taken together, the investigation conducted in this paper suggests that, apart from the SVM implementation, Weka's default configuration of parameters provides an performance close the one achieved with the optimal configuration

    Robust classification via MOM minimization

    Full text link
    We present an extension of Vapnik's classical empirical risk minimizer (ERM) where the empirical risk is replaced by a median-of-means (MOM) estimator, the new estimators are called MOM minimizers. While ERM is sensitive to corruption of the dataset for many classical loss functions used in classification, we show that MOM minimizers behave well in theory, in the sense that it achieves Vapnik's (slow) rates of convergence under weak assumptions: data are only required to have a finite second moment and some outliers may also have corrupted the dataset. We propose an algorithm inspired by MOM minimizers. These algorithms can be analyzed using arguments quite similar to those used for Stochastic Block Gradient descent. As a proof of concept, we show how to modify a proof of consistency for a descent algorithm to prove consistency of its MOM version. As MOM algorithms perform a smart subsampling, our procedure can also help to reduce substantially time computations and memory ressources when applied to non linear algorithms. These empirical performances are illustrated on both simulated and real datasets
    • …
    corecore