4 research outputs found

    Virtual Reality Games for Motor Rehabilitation

    Get PDF
    This paper presents a fuzzy logic based method to track user satisfaction without the need for devices to monitor users physiological conditions. User satisfaction is the key to any product’s acceptance; computer applications and video games provide a unique opportunity to provide a tailored environment for each user to better suit their needs. We have implemented a non-adaptive fuzzy logic model of emotion, based on the emotional component of the Fuzzy Logic Adaptive Model of Emotion (FLAME) proposed by El-Nasr, to estimate player emotion in UnrealTournament 2004. In this paper we describe the implementation of this system and present the results of one of several play tests. Our research contradicts the current literature that suggests physiological measurements are needed. We show that it is possible to use a software only method to estimate user emotion

    Application of information theory and statistical learning to anomaly detection

    Get PDF
    In today\u27s highly networked world, computer intrusions and other attacks area constant threat. The detection of such attacks, especially attacks that are new or previously unknown, is important to secure networks and computers. A major focus of current research efforts in this area is on anomaly detection.;In this dissertation, we explore applications of information theory and statistical learning to anomaly detection. Specifically, we look at two difficult detection problems in network and system security, (1) detecting covert channels, and (2) determining if a user is a human or bot. We link both of these problems to entropy, a measure of randomness information content, or complexity, a concept that is central to information theory. The behavior of bots is low in entropy when tasks are rigidly repeated or high in entropy when behavior is pseudo-random. In contrast, human behavior is complex and medium in entropy. Similarly, covert channels either create regularity, resulting in low entropy, or encode extra information, resulting in high entropy. Meanwhile, legitimate traffic is characterized by complex interdependencies and moderate entropy. In addition, we utilize statistical learning algorithms, Bayesian learning, neural networks, and maximum likelihood estimation, in both modeling and detecting of covert channels and bots.;Our results using entropy and statistical learning techniques are excellent. By using entropy to detect covert channels, we detected three different covert timing channels that were not detected by previous detection methods. Then, using entropy and Bayesian learning to detect chat bots, we detected 100% of chat bots with a false positive rate of only 0.05% in over 1400 hours of chat traces. Lastly, using neural networks and the idea of human observational proofs to detect game bots, we detected 99.8% of game bots with no false positives in 95 hours of traces. Our work shows that a combination of entropy measures and statistical learning algorithms is a powerful and highly effective tool for anomaly detection

    Analysis of Game Bot's Behavioral Characteristics in Social Interaction Networks of MMORPG

    No full text
    corecore