636 research outputs found

    Multirate cascaded discrete-time low-pass ΔΣ modulator for GSM/Bluetooth/UMTS

    Get PDF
    This paper shows that multirate processing in a cascaded discrete-time ΔΣ modulator allows to reduce the power consumption by up to 35%. Multirate processing is possible in a discrete-time ΔΣ modulator by its adaptibility with the sampling frequency. The power reduction can be achieved by relaxing the sampling speed of the first stage and increasing it appropriately in the second stage. Furthermore, a cascaded ΔΣ modulator enables the power efficient implementation of multiple communication standards.@The advantages of multirate cascaded ΔΣ modulators are demonstrated by comparing the performance of single-rate and multirate implementations using behavioral-level and circuit-level simulations. This analysis has been further validated with the design of a multirate cascaded triple-mode discrete-time ΔΣ modulator. A 2-1 multirate low-pass cascade, with a sampling frequency of 80 MHz in the first stage and 320 MHz in the second stage, meets the requirements for UMTS. The first stage alone is suitable for digitizing Bluetooth and GSM with a sampling frequency of 90 and 50 MHz respectively. This multimode ΔΣ modulator is implemented in a 1.2 V 90 nm CMOS technology with a core area of 0.076 mm2. Measurement results show a dynamic range of 66/77/85 dB for UMTS/ Bluetooth/GSM with a power consumption of 6.8/3.7/3.4 mW. This results in an energy per conversion step of 1.2/0.74/2.86 pJ

    Design of a Comparator and an Amplifier in CMOS using standard logic gates

    Get PDF
    Using standard logic gates in CMOS, or standard-cells, has the advantage of full synthe- sizability, as well as the voltage scalability between technologies. In this work a general pur- pose standard-cell-based voltage comparator and amplifier are presented. The objective is to design a general purpose standard-cell-based comparator and ampli- fier in 130 nm CMOS by optimizing the already existing topologies with the aim of improving some of the specifications of the studied topologies. Various simulation testbenches were made to test the studied topologies of comparators and amplifiers, in which the results were compared. The top performing standard-cell com- parator and amplifier were then modified. After successfully designing the comparator, it was used in the design of an opamp-less Sigma-Delta modulator (ΣΔM). The proposed comparator is an OR-AND-Inverter-based comparator with dual inputs and outputs, achieving a delay of 109 ps, static input offset of 591 μV, and random offset of 10.42 μV, while dissipating 890 μW, when clocked at 1.5 GHz. The proposed amplifier is a single-path three-stage inverter-based operational transcon- ductance amplifier (OTA) with active common-mode feedback loop, achieving a DC gain of 63 dB, 1444 MHz of unity-gain bandwidth, 51º of phase margin while dissipating 1098 μW, considering a load of 1 pF. The proposed comparator was employed in the ΣΔM with a standard-cell based edge- triggered flip-flop. The ΣΔM, with a sampling frequency of 2 MHz and a signal bandwidth of 2.5 kHz, achieved a peak SNDR of 69 dB while dissipating only 136.7 μW.Utilizando portas lógicas básicas em CMOS oferece a vantagem de um circuito comple- tamente sintetizável, tal como o escalamento de tensão entre tecnologias. Neste trabalho são apresentados um comparador de tensão e um amplificador utilizando portas lógicas. O objetivo deste trabalho é desenhar um comparador e um amplificador utilizando por- tas lógicas através do estudo e otimização de topologias já existentes com a finalidade de me- lhoramento de algumas das especificações das mesmas. Foram realizados vários bancos de teste para testar as topologias estudadas de compa- radores e amplificadores, em que os resultados foram comparados. As topologias de compa- radores e amplificadores de portas lógicas com melhor performance foram então modificadas. Após o comparador ter sido projetado com sucesso, foi utilizado na projeção de um modula- dor Sigma-Delta (ΣΔM) opamp-less. O comparador proposto é um OR-AND-Inversor com duas entradas e saídas, que apre- senta um atraso de 109 ps, offset estático na entrada de 591 μV, offset aleatório de 10.42 μV, enquanto dissipando 890 μW, utilizando uma frequência de relógio de 1.5 GHz O amplificador proposto é um amplificador operacional de transcondutância single- path three-stage inverter-based com um loop ativo de realimentação do modo-comum, que apresenta um ganho DC de 63 dB, 1444 MHz de ganho-unitário de largura de banda, 51º de margem de fase e dissipando 1098 μW, considerando uma carga de 1 pF. O comparador proposto foi aplicado no ΣΔM com um flip-flop edge-triggered baseado em portas lógicas. O ΣΔM, com uma frequência de amostragem de 2 MHz e uma largura de banda de 2.5 kHz, apresentou um SNDR máximo de 69 dB enquanto dissipando apenas 136.7 μW

    Linear Operation of Switch-Mode Outphasing Power Amplifiers

    Get PDF
    Radio transceivers are playing an increasingly important role in modern society. The ”connected” lifestyle has been enabled by modern wireless communications. The demand that has been placed on current wireless and cellular infrastructure requires increased spectral efficiency however this has come at the cost of power efficiency. This work investigates methods of improving wireless transceiver efficiency by enabling more efficient power amplifier architectures, specifically examining the role of switch-mode power amplifiers in macro cell scenarios. Our research focuses on the mechanisms within outphasing power amplifiers which prevent linear amplification. From the analysis it was clear that high power non-linear effects are correctable with currently available techniques however non-linear effects around the zero crossing point are not. As a result signal processing techniques for suppressing and avoiding non-linear operation in low power regions are explored. A novel method of digital pre-distortion is presented, and conventional techniques for linearisation are adapted for the particular needs of the outphasing power amplifier. More unconventional signal processing techniques are presented to aid linearisation of the outphasing power amplifier, both zero crossing and bandwidth expansion reduction methods are designed to avoid operation in nonlinear regions of the amplifiers. In combination with digital pre-distortion the techniques will improve linearisation efforts on outphasing systems with dynamic range and bandwidth constraints respectively. Our collaboration with NXP provided access to a digital outphasing power amplifier, enabling empirical analysis of non-linear behaviour and comparative analysis of behavioural modelling and linearisation efforts. The collaboration resulted in a bench mark for linear wideband operation of a digital outphasing power amplifier. The complimentary linearisation techniques, bandwidth expansion reduction and zero crossing reduction have been evaluated in both simulated and practical outphasing test benches. Initial results are promising and indicate that the benefits they provide are not limited to the outphasing amplifier architecture alone. Overall this thesis presents innovative analysis of the distortion mechanisms of the outphasing power amplifier, highlighting the sensitivity of the system to environmental effects. Practical and novel linearisation techniques are presented, with a focus on enabling wide band operation for modern communications standards

    Design and implementation of a wideband sigma delta ADC

    Get PDF
    Abstract. High-speed and wideband ADCs have become increasingly important in response to the growing demand for high-speed wireless communication services. Continuous time sigma delta modulators (CTƩ∆M), well-known for their oversampling and noise shaping properties, offer a promising solution for low-power and high-speed design in wireless applications. The objective of this thesis is to design and implement a wideband CTƩ∆M for a global navigation satellite system(GNSS) receiver. The targeted modulator architecture is a 3rdorder single-bit CTƩ∆M, specifically designed to operate within a 15 MHz signal bandwidth. With an oversampling ratio of 25, the ADC’s sampling frequency is set at 768 MHz. The design goal is to achieve a theoretical signal to noise ratio (SNR) of 55 dB. This thesis focuses on the design and implementation of the CTƩ∆M, building upon the principles of a discrete time Ʃ∆ modulator, and leveraging system-level simulation and formulations. A detailed explanation of the coefficient calculation procedure specific to CTƩ∆ modulators is provided, along with a "top-down" design approach that ensures the specified requirements are met. MATLAB scripts for coefficient calculation are also included. To overcome the challenges associated with the implementation of CTƩ∆ modulators, particularly excess loop delay and clock jitter sensitivity, this thesis explores two key strategies: the introduction of a delay compensation path and the utilization of a finite impulse response (FIR) feedback DAC. By incorporating a delay compensation path, the stability of the modulator can be ensured and its noise transfer function (NTF) can be restored. Additionally, the integration of an FIR feedback DAC addresses the issue of clock jitter sensitivity, enhancing the overall performance and robustness of the CTƩ∆M. The CTƩ∆Ms employ the cascade of integrators with feed forward (CIFF) and cascade of integrators with feedforward and feedback (CIFF-B) topologies, with a particular emphasis on the CIFF-B configuration using 22nm CMOS technology node and a supply voltage of 0.8 V. Various simulations are performed to validate the modulator’s performance. The simulation results demonstrate an achievable SNR of 55 dB with a power consumption of 1.36 mW. Furthermore, the adoption of NTF zero optimization techniques enhances the SNR to 62 dB.Laajakaistaisen jatkuva-aikaisen sigma delta-AD-muuntimen suunnittelu ja toteutus. Tiivistelmä. Nopeat ja laajakaistaiset AD-muuntimet ovat tulleet entistä tärkeämmiksi nopeiden langattomien kommunikaatiopalvelujen kysynnän kasvaessa. Jatkuva-aikaiset sigma delta -modulaattorit (CTƩ∆M), joissa käytetään ylinäytteistystä ja kohinanmuokkausta, tarjoavat lupaavan ratkaisun matalan tehonkulutuksen ja nopeiden langattomien sovellusten suunnitteluun. Tämän työn tarkoituksena on suunnitella ja toteuttaa laajakaistainen jatkuva -aikainen sigma delta -modulaattori satelliittipaikannusjärjestelmien (GNSS) vastaanottimeen. Arkkitehtuuriltaan modulaattori on kolmannen asteen 1-bittinen CTƩ∆M, jolla on 15MHz:n signaalikaistanleveys. Ylinäytteistyssuhde on 25 ja AD muuntimen näytteistystaajuus 768 MHz. Tavoitteena on saavuttaa teoreettinen 55 dB signaalikohinasuhde (SNR). Tämä työ keskittyy jatkuva-aikaisen sigma delta -modulaattorin suunnitteluun ja toteutukseen, perustuen diskreettiaikaisen Ʃ∆-modulaattorin periaatteisiin ja systeemitason simulointiin ja mallitukseen. Jatkuva-aikaisen sigma delta -modulaattorin kertoimien laskentamenetelmä esitetään yksityiskohtaisesti, ja vaatimusten täyttyminen varmistetaan “top-down” -suunnitteluperiaatteella. Liitteenä on kertoimien laskemiseen käytetty MATLAB-koodi. Jatkuva-aikaisten sigma delta -modulaattoreiden erityishaasteiden, liian pitkän silmukkaviiveen ja kellojitterin herkkyyden, voittamiseksi tutkitaan kahta strategiaa, viiveen kompensointipolkua ja FIR takaisinkytkentä -DA muunninta. Viivekompensointipolkua käyttämällä modulaattorin stabiilisuus ja kohinansuodatusfunktio saadaan varmistettua ja korjattua. Lisäksi FIR takaisinkytkentä -DA-muuntimen käyttö pienentää kellojitteriherkkyyttä, parantaen jatkuva aikaisen sigma delta -modulaattorin kokonaissuorituskykyä ja luotettavuutta. Toteutetuissa jatkuva-aikaisissa sigma delta -modulaattoreissa on kytketty peräkkäin integraattoreita myötäkytkentärakenteella (CIFF) ja toisessa sekä myötä- että takaisinkytkentärakenteella (CIFF-B). Päähuomio on CIFF-B rakenteessa, joka toteutetaan 22nm CMOS prosessissa käyttäen 0.8 voltin käyttöjännitettä. Suorityskyky varmistetaan erilaisilla simuloinneilla, joiden perusteella 55 dB SNR saavutetaan 1.36 mW tehonkulutuksella. Lisäksi kohinanmuokkausfunktion optimoinnilla SNR saadaan nostettua 62 desibeliin

    A design tool for high-resolution high-frequency cascade continuous- time Σ∆ modulators

    Get PDF
    Event: Microtechnologies for the New Millennium, 2007, Maspalomas, Gran Canaria, SpainThis paper introduces a CAD methodology to assist the de signer in the implementation of continuous-time (CT) cas- cade Σ∆ modulators. The salient features of this methodology ar e: (a) flexible behavioral modeling for optimum accuracy- efficiency trade-offs at different stages of the top-down synthesis process; (b) direct synthesis in the continuous-time domain for minimum circuit complexity and sensitivity; a nd (c) mixed knowledge-based and optimization-based architec- tural exploration and specification transmission for enhanced circuit performance. The applicability of this methodology will be illustrated via the design of a 12 bit 20 MHz CT Σ∆ modulator in a 1.2V 130nm CMOS technology.Ministerio de Ciencia y Educación TEC2004-01752/MICMinisterio de Industria, Turismo y Comercio FIT-330100-2006-134 SPIRIT Projec

    Design of the 12-bit Delta-Sigma Modulator using SC Technique for Vibration Sensor Output Processing

    Get PDF
    The work deals with the design of the 12-bit Delta-Sigma modulator using switched capacitors (SC) technique. The modulator serves to vibration sensor output processing. The first part describes the Delta-Sigma modulator parameters definition. Results of the proposed topology ideal model were presented as well. Next, the Delta-Sigma modulator circuitry on the transistor level was done. The ONSemiconductor I2T100 0.7 um CMOS technology was used for design. Then, the Delta-Sigma modulator nonidealities were simulated and implemented into the MATLAB ideal model of the modulator. The model of real Delta-Sigma modulator was derived. Consequently, modulator coefficients were optimized. Finally, the corner analysis of the Delta-Sigma modulator with the optimized coefficients was simulated. The value of SNDR = 82.2 dB (ENOB = 13.4 bits) was achieved

    Accurate Settling-Time Modeling and Design Procedures for Two-Stage Miller-Compensated Amplifiers for Switched-Capacitor Circuits

    Get PDF
    We present modeling techniques for accurate estimation of settling errors in switched-capacitor (SC) circuits built with Miller-compensated operational transconductance amplifiers (OTAs). One distinctive feature of the proposal is the computation of the impact of signal levels (on both the model parameters and the model structure) as they change during transient evolution. This is achieved by using an event-driven behavioral approach that combines small- and large-signal behavioral descriptions and keeps track of the amplifier state after each clock phase. Also, SC circuits are modeled under closed-loop conditions to guarantee that the results remain close to those obtained by electrical simulation of the actual circuits. Based on these models, which can be regarded as intermediate between the more established small-signal approach and full-fledged simulations, design procedures for dimensioning SC building blocks are presented whose targets are system-level specifications (such as ENOB and SNDR) instead of OTA specifications. The proposed techniques allow to complete top-down model-based designs with 0.3-b accuracy.Ministerio de Educación y Ciencia TEC2006-03022Junta de Andalucía TIC-0281

    Flexible Sigma Delta Time-Interleaved Bandpass Analog-to-Digital Converter

    Get PDF
    Conversion of analog signals to their digital equivalent earlier in a circuit’s topology facilitates faster and more efficient exploitation of the information contained within. Analog-to-digital converters (ADCs) form the link between the analog and digital realms. In high frequency circuits ADCs must often be implemented further downstream after several stages of down-conversion, or through the use of more expensive technologies such as Bi-polar Junction Transistors or Gallium Arsenide. This thesis presents a technique to utilize Complimentary Metal Oxide Semiconductor technology in a parallel time-interleaved architecture. This will reduce circuit complexity and allow the ADC to be placed further upstream reducing the need for large and expensive analog hardware. This thesis utilizes an architecture that allows for higher frequency input signals through the use of down-sampling, parallel processing, and recombination. This thesis will also present the use of sigma delta based modulation in order to increase the resolution of the digital output signal. Exploitation of oversampling and the resultant noise-shaping characteristics of the sigma delta modulator will enable the user to gain resolution without the increased cost of implementing more expensive ADC architectures such as Flash. This thesis also presents a flexible converter such that both the center frequency and resolution can be modified by manipulating inputs. Specifically, the input and output filters as well as the sampling frequency can be tuned such that the circuit will operate at a particular center frequency. Also, the circuit will have flexible resolution which can be controlled by the clock input. Proof of concept is accomplished with a Matlab® simulation followed by schematic implementation in Cadence®. The design is constructed using IBM® 0.13 µm technology with a rail voltage of 1.2 V. Results are evaluated through the calculation of the effective number of bits and the signal to noise ratio. Conclusions and guidance on future research are provided
    corecore