1,985 research outputs found

    Current challenges in content based image retrieval by means of low-level feature combining

    Get PDF
    The aim of this paper is to discuss a fusion of the two most popular low-level image features - colour and shape - in the aspect of content-based image retrieval. By combining them we can achieve much higher accuracy in various areas, e.g. pattern recognition, object representation, image retrieval. To achieve such a goal two general strategies (sequential and parallel) for joining elementary queries were proposed. Usually they are employed to construct a processing structure, where each image is being decomposed into regions, based on shapes with some characteristic properties - colour and its distribution. In the paper we provide an analysis of this proposition as well as the exemplary results of application in the Content Based Image Retrieval problem. The original contribution of the presented work is related to different fusions of several shape and colour descriptors (standard and non-standard ones) and joining them into parallel or sequential structures giving considerable improvements in content-based image retrieval. The novelty is based on the fact that many existing methods (even complex ones) work in single domain (shape or colour), while the proposed approach joins features from different areas

    Pre-Trained Driving in Localized Surroundings with Semantic Radar Information and Machine Learning

    Get PDF
    Entlang der Signalverarbeitungskette von Radar Detektionen bis zur Fahrzeugansteuerung, diskutiert diese Arbeit eine semantischen Radar Segmentierung, einen darauf aufbauenden Radar SLAM, sowie eine im Verbund realisierte autonome Parkfunktion. Die Radarsegmentierung der (statischen) Umgebung wird durch ein Radar-spezifisches neuronales Netzwerk RadarNet erreicht. Diese Segmentierung ermöglicht die Entwicklung des semantischen Radar Graph-SLAM SERALOC. Auf der Grundlage der semantischen Radar SLAM Karte wird eine beispielhafte autonome ParkfunktionalitĂ€t in einem realen VersuchstrĂ€ger umgesetzt. Entlang eines aufgezeichneten Referenzfades parkt die Funktion ausschließlich auf Basis der Radar Wahrnehmung mit bisher unerreichter Positioniergenauigkeit. Im ersten Schritt wird ein Datensatz von 8.2 · 10^6 punktweise semantisch gelabelten Radarpunktwolken ĂŒber eine Strecke von 2507.35m generiert. Es sind keine vergleichbaren DatensĂ€tze dieser Annotationsebene und Radarspezifikation öffentlich verfĂŒgbar. Das ĂŒberwachte Training der semantischen Segmentierung RadarNet erreicht 28.97% mIoU auf sechs Klassen. Außerdem wird ein automatisiertes Radar-Labeling-Framework SeRaLF vorgestellt, welches das Radarlabeling multimodal mittels Referenzkameras und LiDAR unterstĂŒtzt. FĂŒr die kohĂ€rente Kartierung wird ein Radarsignal-Vorfilter auf der Grundlage einer Aktivierungskarte entworfen, welcher Rauschen und andere dynamische Mehrwegreflektionen unterdrĂŒckt. Ein speziell fĂŒr Radar angepasstes Graph-SLAM-Frontend mit Radar-Odometrie Kanten zwischen Teil-Karten und semantisch separater NDT Registrierung setzt die vorgefilterten semantischen Radarscans zu einer konsistenten metrischen Karte zusammen. Die Kartierungsgenauigkeit und die Datenassoziation werden somit erhöht und der erste semantische Radar Graph-SLAM fĂŒr beliebige statische Umgebungen realisiert. Integriert in ein reales Testfahrzeug, wird das Zusammenspiel der live RadarNet Segmentierung und des semantischen Radar Graph-SLAM anhand einer rein Radar-basierten autonomen ParkfunktionalitĂ€t evaluiert. Im Durchschnitt ĂŒber 42 autonome Parkmanöver (∅3.73 km/h) bei durchschnittlicher ManöverlĂ€nge von ∅172.75m wird ein Median absoluter Posenfehler von 0.235m und End-Posenfehler von 0.2443m erreicht, der vergleichbare Radar-Lokalisierungsergebnisse um ≈ 50% ĂŒbertrifft. Die Kartengenauigkeit von verĂ€nderlichen, neukartierten Orten ĂŒber eine Kartierungsdistanz von ∅165m ergibt eine ≈ 56%-ige Kartenkonsistenz bei einer Abweichung von ∅0.163m. FĂŒr das autonome Parken wurde ein gegebener Trajektorienplaner und Regleransatz verwendet

    Emerging Chemical Patterns for Virtual Screening and Knowledge Discovery

    Get PDF
    The adaptation and evaluation of contemporary data mining methods to chemical and biological problems is one of major areas of research in chemoinformatics. Currently, large databases containing millions of small organic compounds are publicly available, and the need for advanced methods to analyze these data increases. Most methods used in chemoinformatics, e.g. quantitative structure activity relationship (QSAR) modeling, decision trees and similarity searching, depend on the availability of large high-quality training data sets. However, in biological settings, the availability of these training sets is rather limited. This is especially true for early stages of drug discovery projects where typically only few active molecules are available. The ability of chemoinformatic methods to generalize from small training sets and accurately predict compound properties such as activity, ADME or toxicity is thus crucially important. Additionally, biological data such as results from high-throughput screening (HTS) campaigns is heavily biased towards inactive compounds. This bias presents an additional challenge for the adaptation of data mining methods and distinguishes chemoinformatics data from the standard benchmark scenarios in the data mining community. Even if a highly accurate classifier would be available, it is still necessary to evaluate the predictions experimentally. These experiments are both costly and time-consuming and the need to optimize resources has driven the development of integrated screening protocols which try to minimize experimental efforts but still reaching high hit rates of active compounds. This integration, termed “sequential screening” benefits from the complementary nature of experimental HTS and computational virtual screening (VS) methods. In this thesis, a current data mining framework based on class-specific nominal combinations of attributes (emerging patterns) is adapted to chemoinformatic problems and thoroughly evaluated. Combining emerging pattern methodology and the well-known notion of chemical descriptors, emerging chemical patterns (ECP) are defined as class- specific descriptor value range combinations. Each pattern can be thought of as a region in chemical space which is dominated by compounds from one class only. Based on chemical patterns, several experiments are presented which evaluate the performance of pattern-based knowledge mining, property prediction, compound ranking and sequential screening. ECP-based classification is implemented and evaluated on four activity classes for the prediction of compound potency levels. Compared to decision trees and a Bayesian binary QSAR method, ECP-based classification produces high accuracy in positive and negative classes even on the basis of very small training set, a result especially valuable to chemoinformatic problems. The simple nature of ECPs as class-specific descriptor value range combinations makes them easily interpretable. This is used to related ECPs to changes in the interaction network of protein-ligand complexes when the binding conformation is replaced by a computer-modeled conformation in a knowledge mining experiment. ECPs capture well-known energetic differences between binding and energy-minimized conformations and additionally present new insight into these differences on a class level analysis. Finally, the integration of ECPs and HTS is evaluated in simulated lead-optimization and sequential screening experiments. The high accuracy on very small training sets is exploited to design an iterative simulated lead optimization experiment based on experimental evaluation of randomly selected small training sets. In each iteration, all compounds predicted to be weakly active are removed and the remaining compound set is enriched with highly potent compounds. On this basis, a simulated sequential screening experiment shows that ECP-based ranking recovers 19% of available compounds while reducing the “experimental” effort to 0.2%. These findings illustrate the potential of sequential screening protocols and hopefully increase the popularity of this relatively new methodology

    Out-of-plane graphene materials for enhanced cell-chip coupling

    Get PDF
    Bioelectronic devices interact directly with biological systems to monitor cellular electrical activity and promote cell reaction to electrical stimulation. The capabilities of such devices, in terms of recording and stimulation, are affected by the effective cell-platform coupling. Therefore, during the last years, the development of engineered 2.5-3D micro and nanostructures has improved the effectiveness of biosensors using protruding structures to achieve a more intimate contact between cells and substrates. The vertical structures, due to their surface curvature, can actively modulate the cell-material interaction and the coupling conditions by regulating peculiar cellular processes at the interface such as membrane bending, ruffling, which ultimately reduce the distance between the electroactive materials and the biological components. In parallel, the rising of carbon-based materials (i.e., graphene) for bioelectronics has gained attention during the last years because of their outstanding chemical properties which allow improved cell-device interfacing. Given this scenario, 3D out-of-the-plane graphene structures has been designed and grown on planar platforms, exploiting the electrical, mechanical and optical features of this promising material. 3D fuzzy graphene (3DFG) and two nanowire-templated arrangements (NT-3DFG collapsed and non-collapsed) were realized to ultimately increase the dimensionality at the interface with cells through nanoscale features and wire-based architectures. Here we report a comprehensive study of the electrogenic cells-material interface by using fluorescence and electron microscopy for characterizing cell-graphene materials interactions at micro and nanoscale. First, we investigated the biocompatibility and the adhesion effect (cell stretching and outgrowth) of the diverse graphene-based pseudo-3D surfaces coupled to cardiomyocytes-like cells and primary cortical neuronal cells. Then, we examined the membrane deformation and the actual cell-device coupling via scanning electron microscopy/focused ion beam sectioning. We found out an enhanced cells adhesion on the substrates, suggesting that out-of-the-plane platform could improve the coupling between cells and sensors not only for electrophysiology application but also to modulate cellular functionalities and outgrowth

    Combining perceptual features with diffusion distance for face recognition

    Get PDF

    Characterization of Anisotropic Gaussian Random Fields by Minkowski Tensors

    Full text link
    Gaussian random fields are among the most important models of amorphous spatial structures and appear across length scales in a variety of physical, biological, and geological applications, from composite materials to geospatial data. Anisotropy in such systems can sensitively and comprehensively be characterized by the so-called Minkowski tensors from integral geometry. Here, we analytically calculate the expected Minkowski tensors of arbitrary rank for the level sets of Gaussian random fields. The explicit expressions for interfacial Minkowski tensors are confirmed in detailed simulations. We demonstrate how the Minkowski tensors detect and characterize the anisotropy of the level sets, and we clarify which shape information is contained in the Minkowski tensors of different rank. Using an irreducible representation of the Minkowski tensors in the Euclidean plane, we show that higher-rank tensors indeed contain additional anisotropy information compared to a rank two tensor. Surprisingly, we can nevertheless predict this information from the second-rank tensor if we assume that the random field is Gaussian. This relation between tensors of different rank is independent of the details of the model. It is, therefore, useful for a null hypothesis test that detects non-Gaussianities in anisotropic random fields

    Automatic Classification of Seafloor Image Data by Geospatial Texture Descriptors

    Get PDF
    A novel approach for automatic context-sensitive classification of spatially distributed image data is introduced. The proposed method targets applications of seafloor habitat mapping but is generally not limited to this domain or use case. Spatial context information is incorporated in a two-stage classification process, where in the second step a new descriptor for patterns of feature class occurrence according to a generically defined classification scheme is applied. The method is based on supervised machine learning, where numerous state-of-the-art approaches are applicable. The descriptor computation originates from texture analysis in digital image processing. Patterns of feature class occurrence are perceived as a texture-like phenomenon and the descriptors are therefore denoted by Geospatial Texture Descriptors. The proposed method was extensively validated based on a set of more than 4000 georeferenced video mosaics acquired at the Haakon Mosby Mud Volcano north-west of Norway recorded during cruise ARK XIX3b of the German research vessel Polarstern. The underlying classification scheme was derived from a scheme developed for manual annotation of the same dataset applied in the course of Jerosch [2006]. Features of interest are related to methane discharge at mud volcanoes, which are considered a significant source of methane emission. In the experimental evaluation, based on the prepared training and test data, a major improvement of the classification precision compared to local classification as well as classification based on the raw data from the local spatial context was achieved by the application of the proposed method. The classification precision was particularly improved for rarely occurring classes. In a further comparison with annotated data available from Jerosch [2006] the regional setting of the investigation area obtained by the application of the proposed method was found almost equivalent to the results of an experienced scientist
    • 

    corecore