29 research outputs found

    Simultaneous-FETI and Block-FETI: robust domain decomposition with multiple search directions.

    Get PDF
    International audienceDomain Decomposition methods often exhibit very poor performance when applied to engineering problems with large heterogeneities. In particular for heterogeneities along domain interfaces the iterative techniques to solve the interface problem are lacking an efficient preconditioner. Recently a robust approach, named FETI-Geneo, was proposed where troublesome modes are precomputed and deflated from the interface problem. The cost of the FETI-Geneo is however high. We propose in this paper techniques that share similar ideas with FETI-Geneo but where no pre-processing is needed and that can be easily and efficiently implemented as an alternative to standard Domain Decomposition methods. In the block iterative approaches presented in this paper, the search space at every iteration on the interface problem contains as many directions as there are domains in the decomposition. Those search directions originate either from the domain-wise preconditioner (in the Simultaneous FETI method) or from the block structure of the right-hand side of the interface problem (Block FETI). We show on 2D structural examples that both methods are robust and provide good convergence in the presence of high heterogeneities, even when the interface is jagged or when the domains have a bad aspect ratio. The Simultaneous FETI was also efficiently implemented in an optimized parallel code and exhibited excellent performance compared to the regular FETI method

    Adaptive FETI-DP and BDDC methods for highly heterogeneous elliptic finite element problems in three dimensions

    Get PDF
    Numerical methods are often well-suited for the solution of (elliptic) partial differential equations (PDEs) modeling naturally occuring processes. Many different solvers can be applied to systems which are obtained after discretization by the finite element method. Parallel architectures in modern computers facilitate the efficient use of diverse divide and conquer strategies. The intuitive approach, to divide a large (global) problem into subproblems, which are then solved in parallel, can significantly reduce the solution time. It is obvious that the solvers on the local subproblems then should deliver the contributions of the global solution restricted to the subdomains of computational region. The class of domain decomposition methods provides widely-used iterative algorithms for the parallel solution of implicit finite element problems. Often, an additional coarse space, which introduces a coupling between the subdomains, is used to ensure a global transport of information between the subdomains across the entire domain. The FETI-DP and BDDC domain decomposition methods are highly scalable parallel algorithms. However, when the parameter or coefficient distribution in the underlying partial differential equation becomes highly heterogeneous, classical methods, with a priori chosen coarse spaces, might not converge in a limited number of iterations. A remedy is offered by problem-dependent coarse spaces. These coarse spaces can be provided by adaptive methods, which then can improve the convergence at the cost of additional constraints. In this thesis, we introduce robust FETI-DP and BDDC methods for three-dimensional problems. These methods incorporate constraints, which are computed from local eigenvalue problems on faces and edges between subdomains, into the coarse space. The implementation of the constraints is performed by a deflation or balancing approach or by partial finite element assembly after a transformation of basis. For the latter, we introduce the generalized transformation-of-basis approach and show its correspondence to a deflation or balancing approach. An efficient parallel implementation of adaptive FETI-DP is discussed in the last part of this thesis. We provide weak and strong parallel scalability results for our adaptive algorithm executed on the supercomputer magnitUDE of the University of Duisburg-Essen. For weak scaling, we can show very good results up to 4,096 cores. We can also present very good strong scaling results up to 864 cores

    Domain Decomposition Methods for Elastic Materials with Compressible and Almost Incompressible Components

    Get PDF
    Domain decomposition methods are iterative methods to solve large systems of equations, obtained, e.g., from finite element discretization. Here, the domain is decomposed into smaller subproblems, which can be solved in parallel. In the first part of this work, new condition number bounds are proven for a FETI-DP type (Finite Element Tearing and Interconnecting Dual-Primal) domain decomposition method for compressible linear elasticity in 3D. Each subdomain may contain an inclusion having different material properties. The condition number bound only depends on the subdomain diameter, the finite element diameter, and the thickness of the compressible hull. It is independent of the material parameters in the inclusions, thus almost incompressible inclusions are also possible. In the second part of this thesis a new coarse space for FETI-DP methods for almost incompressible linear elasticity on the whole domain is presented. This coarse space is much smaller than the standard coarse space for FETI-DP or BDDC methods for almost incompressible linear elasticity.Gebietszerlegungsalgorithmen sind iterative Verfahren zum Lösen großer Gleichungssysteme, die z. B. durch den Finite-Elemente-Ansatz entstehen. Dabei wird das Ausgangsproblem in kleinere Teilprobleme zerlegt, die dann parallel gelöst werden können. Im ersten Teil der Arbeit werden neue Konditionszahlabschätzungen für Gebietszerlegungsverfahren vom FETI-DP- Typ (Finite Element Tearing and Interconnecting Dual-Primal) für kompressible lineare Elastizitätsprobleme in 3D bewiesen, wobei in jedem Gebiet Einschlüsse mit anderen Materialparametern eingebettet sein können. Die Abschätzungen hängen dabei nur von dem typischen Teilgebietsdurchmesser, dem Finite-Elemente-Durchmesser und der Breite einer kompressiblen Hülle ab. Sie ist unabhängig von den Materialparametern in den Einschlüssen. Auch fast-inkompressible Einschlüsse sind möglich. Im zweiten Teil der Arbeit wird ein neuer Grobgitterraum für FETI-DP-Verfahren für fast-inkompressible Elastizität vorgestellt. Dieser Grobgitterraum ist erheblich kleiner als bisher bekannte Grobgitterräume für FETI-DP oder BDDC-Verfahren für fast-inkompressible lineare Elastizität

    Adaptive Coarse Spaces for FETI-DP and BDDC Methods

    Get PDF
    Iterative substructuring methods are well suited for the parallel iterative solution of elliptic partial differential equations. These methods are based on subdividing the computational domain into smaller nonoverlapping subdomains and solving smaller problems on these subdomains. The solutions are then joined to a global solution in an iterative process. In case of a scalar diffusion equation or the equations of linear elasticity with a diffusion coefficient or Young modulus, respectively, constant on each subdomain, the numerical scalability of iterative substructuring methods can be proven. However, the convergence rate deteriorates significantly if the coefficient in the underlying partial differential equation (PDE) has a high contrast across and along the interface of the substructures. Even sophisticated scalings often do not lead to a good convergence rate. One possibility to enhance the convergence rate is to choose appropriate primal constraints. In the present work three different adaptive approaches to compute suitable primal constraints are discussed. First, we discuss an adaptive approach introduced by Dohrmann and Pechstein that draws on the operator P_D which is an important ingredient in the analysis of iterative substructuring methods like the dual-primal Finite Element Tearing and Interconnecting (FETI-DP) method and the closely related Balancing Domain Decomposition by Constraints (BDDC) method. We will also discuss variations of the method by Dohrmann and Pechstein introduced by Klawonn, Radtke, and Rheinbach. Secondly, we describe an adaptive method introduced by Mandel and Sousedík which is also based on the P_D-operator. Recently, a proof for the condition number bound in this method was provided by Klawonn, Radtke, and Rheinbach. Thirdly, we discuss an adaptive approach introduced by Klawonn, Radtke, and Rheinbach that enforces a Poincaré- or Korn-like inequality and an extension theorem. In all approaches generalized eigenvalue problems are used to compute a coarse space that leads to an upper bound of the condition number which is independent of the jumps in the coefficient and depend on an a priori prescribed tolerance. Proofs and numerical tests for all approaches are given in two dimensions. Finally, all approaches are compared

    Software concepts and algorithms for an efficient and scalable parallel finite element method

    Get PDF
    Software packages for the numerical solution of partial differential equations (PDEs) using the finite element method are important in different fields of research. The basic data structures and algorithms change in time, as the user\'s requirements are growing and the software must efficiently use the newest highly parallel computing systems. This is the central point of this work. To make efficiently use of parallel computing systems with growing number of independent basic computing units, i.e.~CPUs, we have to combine data structures and algorithms from different areas of mathematics and computer science. Two crucial parts are a distributed mesh and parallel solver for linear systems of equations. For both there exists multiple independent approaches. In this work we argue that it is necessary to combine both of them to allow for an efficient and scalable implementation of the finite element method. First, we present concepts, data structures and algorithms for distributed meshes, which allow for local refinement. The central point of our presentation is to provide arbitrary geometrical information of the mesh and its distribution to the linear solver. A large part of the overall computing time of the finite element method is spend by the linear solver. Thus, its parallelization is of major importance. Based on the presented concept for distributed meshes, we preset several different linear solver methods. Hereby we concentrate on general purpose linear solver, which makes only little assumptions about the systems to be solver. For this, a new FETI-DP (Finite Element Tearing and Interconnect - Dual Primal) method is proposed. Those the standard FETI-DP method is quasi optimal from a mathematical point of view, its not possible to implement it efficiently for a large number of processors (> 10,000). The main reason is a relatively small but globally distributed coarse mesh problem. To circumvent this problem, we propose a new multilevel FETI-DP method which hierarchically decompose the coarse grid problem. This leads to a more local communication pattern for solver the coarse grid problem and makes it possible to scale for a large number of processors. Besides the parallelization of the finite element method, we discuss an approach to speed up serial computations of existing finite element packages. In many computations the PDE to be solved consists of more than one variable. This is especially the case in multi-physics modeling. Observation show that in many of these computation the solution structure of the variables is different. But in the standard finite element method, only one mesh is used for the discretization of all variables. We present a multi-mesh finite element method, which allows to discretize a system of PDEs with two independently refined meshes.Softwarepakete zur numerischen Lösung partieller Differentialgleichungen mit Hilfe der Finiten-Element-Methode sind in vielen Forschungsbereichen ein wichtiges Werkzeug. Die dahinter stehenden Datenstrukturen und Algorithmen unterliegen einer ständigen Neuentwicklung um den immer weiter steigenden Anforderungen der Nutzergemeinde gerecht zu werden und um neue, hochgradig parallel Rechnerarchitekturen effizient nutzen zu können. Dies ist auch der Kernpunkt dieser Arbeit. Um parallel Rechnerarchitekturen mit einer immer höher werdenden Anzahl an von einander unabhängigen Recheneinheiten, z.B.~Prozessoren, effizient Nutzen zu können, müssen Datenstrukturen und Algorithmen aus verschiedenen Teilgebieten der Mathematik und Informatik entwickelt und miteinander kombiniert werden. Im Kern sind dies zwei Bereiche: verteilte Gitter und parallele Löser für lineare Gleichungssysteme. Für jedes der beiden Teilgebiete existieren unabhängig voneinander zahlreiche Ansätze. In dieser Arbeit wird argumentiert, dass für hochskalierbare Anwendungen der Finiten-Elemente-Methode nur eine Kombination beider Teilgebiete und die Verknüpfung der darunter liegenden Datenstrukturen eine effiziente und skalierbare Implementierung ermöglicht. Zuerst stellen wir Konzepte vor, die parallele verteile Gitter mit entsprechenden Adaptionstrategien ermöglichen. Zentraler Punkt ist hier die Informationsaufbereitung für beliebige Löser linearer Gleichungssysteme. Beim Lösen partieller Differentialgleichung mit der Finiten Elemente Methode wird ein großer Teil der Rechenzeit für das Lösen der dabei anfallenden linearen Gleichungssysteme aufgebracht. Daher ist deren Parallelisierung von zentraler Bedeutung. Basierend auf dem vorgestelltem Konzept für verteilten Gitter, welches beliebige geometrische Informationen für die linearen Löser aufbereiten kann, präsentieren wir mehrere unterschiedliche Lösermethoden. Besonders Gewicht wird dabei auf allgemeine Löser gelegt, die möglichst wenig Annahmen über das zu lösende System machen. Hierfür wird die FETI-DP (Finite Element Tearing and Interconnect - Dual Primal) Methode weiterentwickelt. Obwohl die FETI-DP Methode vom mathematischen Standpunkt her als quasi-optimal bezüglich der parallelen Skalierbarkeit gilt, kann sie für große Anzahl an Prozessoren (> 10.000) nicht mehr effizient implementiert werden. Dies liegt hauptsächlich an einem verhältnismäßig kleinem aber global verteilten Grobgitterproblem. Wir stellen eine Multilevel FETI-DP Methode vor, die dieses Problem durch eine hierarchische Komposition des Grobgitterproblems löst. Dadurch wird die Kommunikation entlang des Grobgitterproblems lokalisiert und die Skalierbarkeit der FETI-DP Methode auch für große Anzahl an Prozessoren sichergestellt. Neben der Parallelisierung der Finiten-Elemente-Methode beschäftigen wir uns in dieser Arbeit mit der Ausnutzung von bestimmten Voraussetzung um auch die sequentielle Effizienz bestehender Implementierung der Finiten-Elemente-Methode zu steigern. In vielen Fällen müssen partielle Differentialgleichungen mit mehreren Variablen gelöst werden. Sehr häufig ist dabei zu beobachten, insbesondere bei der Modellierung mehrere miteinander gekoppelter physikalischer Phänomene, dass die Lösungsstruktur der unterschiedlichen Variablen entweder schwach oder vollständig voneinander entkoppelt ist. In den meisten Implementierungen wird dabei nur ein Gitter zur Diskretisierung aller Variablen des Systems genutzt. Wir stellen eine Finite-Elemente-Methode vor, bei der zwei unabhängig voneinander verfeinerte Gitter genutzt werden können um ein System partieller Differentialgleichungen zu lösen

    Nonlinear FETI-DP and BDDC Methods

    Get PDF
    In the simulation of deformation processes in material science the consideration of a microscopic material structure is often necessary, as in the simulation of modern high strength steels. A straightforward finite element discretization of the complete deformed body resolving the microscopic structure leads to very large nonlinear problems and a solution is out of reach, even on modern supercomputers. In homogenization approaches, as the computational scale bridging approach FE2, the macroscopic scale of the deformed object is decoupled from the microscopic scale of the material structure. These approaches only consider the microstructure in a localized fashion on independent and parallel representative volume elements (RVEs). This introduces massive parallelism on the macroscopic level and is thus ideal for modern computer architectures with large numbers of parallel computational cores. Nevertheless, the discretization of an RVE can still result in large nonlinear problems and thus highly scalable parallel solvers are necessary. In this context, nonlinear FETI-DP (Finite Element Tearing and Interconnecting - Dual-Primal) and BDDC (Balancing Domain Decomposition by Constraints) domain decomposition methods are discussed in this thesis, which are parallel solution methods for nonlinear problems arising from a finite element discretization. These approaches can be viewed as a strategies to further localize the computational work and to extend the parallel scalability of classical FETI-DP and BDDC methods towards extreme-scale supercomputers. Also variants providing an inexact solution of the FETI-DP coarse problem are considered in this thesis, combining two successful paradigms, i.e., nonlinear domain decomposition and AMG (Algebraic Multigrid). An efficient implementation of the resulting inexact reduced Nonlinear-FETI-DP-1 method is presented and scalability beyond 200,000 computational cores is showed. Finally, a highly scalable FE2 implementation using recent inexact reduced FETI-DP methods to solve the RVE problems on the microscopic level is presented and scalability on all 458,752 cores of the JUQUEEN BlueGene/Q system at Forschungszentrum Jülich is demonstrated

    A fully algebraic and robust two-level Schwarz method based on optimal local approximation spaces

    Full text link
    Two-level domain decomposition preconditioners lead to fast convergence and scalability of iterative solvers. However, for highly heterogeneous problems, where the coefficient function is varying rapidly on several possibly non-separated scales, the condition number of the preconditioned system generally depends on the contrast of the coefficient function leading to a deterioration of convergence. Enhancing the methods by coarse spaces constructed from suitable local eigenvalue problems, also denoted as adaptive or spectral coarse spaces, restores robust, contrast-independent convergence. However, these eigenvalue problems typically rely on non-algebraic information, such that the adaptive coarse spaces cannot be constructed from the fully assembled system matrix. In this paper, a novel algebraic adaptive coarse space, which relies on the a-orthogonal decomposition of (local) finite element (FE) spaces into functions that solve the partial differential equation (PDE) with some trace and FE functions that are zero on the boundary, is proposed. In particular, the basis is constructed from eigenmodes of two types of local eigenvalue problems associated with the edges of the domain decomposition. To approximate functions that solve the PDE locally, we employ a transfer eigenvalue problem, which has originally been proposed for the construction of optimal local approximation spaces for multiscale methods. In addition, we make use of a Dirichlet eigenvalue problem that is a slight modification of the Neumann eigenvalue problem used in the adaptive generalized Dryja-Smith-Widlund (AGDSW) coarse space. Both eigenvalue problems rely solely on local Dirichlet matrices, which can be extracted from the fully assembled system matrix. By combining arguments from multiscale and domain decomposition methods we derive a contrast-independent upper bound for the condition number

    An adaptive choice of primal constrains for BDDC domain decomposition algorithms

    Get PDF
    An adaptive choice for primal spaces based on parallel sums is developed for BDDC deluxe methods and elliptic problems in three dimensions. The primal space, which forms the global, coarse part of the domain decomposition algorithm and which is always required for any competitive algorithm, is defined in terms of generalized eigenvalue problems related to subdomain edges and faces; selected eigenvectors associated to the smallest eigenvalues are used to enhance the primal spaces. This selection can be made automatic by using tolerance parameters specified for the subdomain faces and edges. Numerical results verify the results and provide a comparison with primal spaces commonly used. They include results for cubic subdomains as well as subdomains obtained by a mesh partitioner. Different distributions for the coefficients are also considered with constant coefficients, highly random values, and channel distributions.Universidad de Costa Rica/[821-B5-A28]/UCR/Costa RicaUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Básicas::Centro de Investigaciones en Matemáticas Puras y Aplicadas (CIMPA)UCR::Vicerrectoría de Docencia::Ciencias Básicas::Facultad de Ciencias::Escuela de Matemátic

    A parallel Newton-Krylov-FETI-DP Solver based on FEAP: Large-scale applications and scalability for problems in the mechanics of soft biological tissues in arterial wall structures

    Get PDF
    An MPI-parallel Newton-Krylov-FETI-DP solver based on FEAP is presented together with applications to nonlinear problems in the quasi-static biomechanics of soft biological tissues. The formulation is based on highly nonlinear hyperelastic anisotropic and poly-convex models. High-resolution computations of the wall stresses in patient-specific arterial wall structures subjected to an interior normal pressure in the physiological regime of the blood pressure (up to 500 [mmHg]) are reported together with results on strong scalability. The weak scalability of Newton-Krylov-FETI-DP is investigated for up to 140 million degrees of freedom using 4096 processor cores on a Cray XT6m supercomputer in a series of simple tension tests. An implementation of a new FEAP-interface called libfw is presented which allows for the flexible unified integration of FEAP into other software packages, e.g., into LifeV. The modifications done to FEAP are dissected and discussed in detail as a case study in order to illustrate possible approaches for the integration of different code components or applications in similar scenarios
    corecore