1,441 research outputs found

    Intraneural stimulation elicits discrimination of textural features by artificial fingertip in intact and amputee humans.

    Get PDF
    Restoration of touch after hand amputation is a desirable feature of ideal prostheses. Here, we show that texture discrimination can be artificially provided in human subjects by implementing a neuromorphic real-time mechano-neuro-transduction (MNT), which emulates to some extent the firing dynamics of SA1 cutaneous afferents. The MNT process was used to modulate the temporal pattern of electrical spikes delivered to the human median nerve via percutaneous microstimulation in four intact subjects and via implanted intrafascicular stimulation in one transradial amputee. Both approaches allowed the subjects to reliably discriminate spatial coarseness of surfaces as confirmed also by a hybrid neural model of the median nerve. Moreover, MNT-evoked EEG activity showed physiologically plausible responses that were superimposable in time and topography to the ones elicited by a natural mechanical tactile stimulation. These findings can open up novel opportunities for sensory restoration in the next generation of neuro-prosthetic hands

    Convolutional Neural Networks for Epileptic Seizure Prediction

    Get PDF
    Epilepsy is the most common neurological disorder and an accurate forecast of seizures would help to overcome the patient's uncertainty and helplessness. In this contribution, we present and discuss a novel methodology for the classification of intracranial electroencephalography (iEEG) for seizure prediction. Contrary to previous approaches, we categorically refrain from an extraction of hand-crafted features and use a convolutional neural network (CNN) topology instead for both the determination of suitable signal characteristics and the binary classification of preictal and interictal segments. Three different models have been evaluated on public datasets with long-term recordings from four dogs and three patients. Overall, our findings demonstrate the general applicability. In this work we discuss the strengths and limitations of our methodology.Comment: accepted for MLESP 201

    Hybrid head cap for mouse brain studies

    Get PDF
    Abstract. In this thesis, I present a hybrid head cap in combination with non-invasive multi-channel Electroencephalogram (EEG) and Near-Infrared Spectroscopy (NIRS) to measure brainwaves on mice’s scalps. Laboratory animal research provides insights into multiple potential applications involving humans and other animals. An experimental framework that targets laboratory animals can lead to useful transnational research if it strongly reflects the actual application environment. The non-invasive head cap with three electrodes for EEG and two optodes for NIRS is suggested to measure brainwaves throughout the laboratory mice’s entire brain region without surgical procedures. The suggested hybrid head cap aims to ensure stability in vivo monitoring for mouse brain in a non-invasive way, similarly as the monitoring is performed for the human brain. The experimental part of the work to study the quality of the gathered EEG and fNIRS signals, and usability validation of the head cap, however, was not completed in the planned time frame of the thesis work

    Affect Recognition Using Electroencephalography Features

    Get PDF
    Affect is the psychological display of emotion often described with three principal dimensions: 1) valence 2) arousal and 3) dominance. This thesis work explores the ability of computers to recognize human emotions using Electroencephalography (EEG) features. The development of computer systems to classify human emotions using physiological signals has recently gained pace in the research and technological community. This is because by using EEG to analyze the cognitive state one will be able to establish a direct communication channel between a computer and the human brain. Other applications of recognizing the affective states from EEG include identifying stress and cognitive workload on individuals and assist them in relaxation. This thesis is an extensive study on the design of paradigms that help computer systems recognize emotional states given a multichannel Electroencephalogram (EEG) segment. The process of first extracting features from the EEG signals using signal processing and then constructing a predictive model via machine learning is often referred to as paradigms. In this work, we will first present a brief review of the state-of-the-art paradigms that have contributed to the topic of emotional affect recognition. Then the proposed paradigms to recognize the principal dimensions of affect are detailed. Feature selection is also performed in order to select the relevant features. The evaluation of the models created to predict the affective states will be performed quantitatively by calculating the generalization accuracy and qualitatively by interpreting them

    Identification of audio evoked response potentials in ambulatory EEG data

    Get PDF
    Electroencephalography (EEG) is commonly used for observing brain function over a period of time. It employs a set of invasive electrodes on the scalp to measure the electrical activity of the brain. EEG is mainly used by researchers and clinicians to study the brain’s responses to a specific stimulus - the event-related potentials (ERPs). Different types of undesirable signals, which are known as artefacts, contaminate the EEG signal. EEG and ERP signals are very small (in the order of microvolts); they are often obscured by artefacts with much larger amplitudes in the order of millivolts. This greatly increases the difficulty of interpreting EEG and ERP signals.Typically, ERPs are observed by averaging EEG measurements made with many repetitions of the stimulus. The average may require many tens of repetitions before the ERP signal can be observed with any confidence. This greatly limits the study and useof ERPs. This project explores more sophisticated methods of ERP estimation from measured EEGs. An Optimal Weighted Mean (OWM) method is developed that forms a weighted average to maximise the signal to noise ratio in the mean. This is developedfurther into a Bayesian Optimal Combining (BOC) method where the information in repetitions of ERP measures is combined to provide a sequence of ERP estimations with monotonically decreasing uncertainty. A Principal Component Analysis (PCA) isperformed to identify the basis of signals that explains the greatest amount of ERP variation. Projecting measured EEG signals onto this basis greatly reduces the noise in measured ERPs. The PCA filtering can be followed by OWM or BOC. Finally, crosschannel information can be used. The ERP signal is measured on many electrodes simultaneously and an improved estimate can be formed by combining electrode measurements. A MAP estimate, phrased in terms of Kalman Filtering, is developed using all electrode measurements.The methods developed in this project have been evaluated using both synthetic and measured EEG data. A synthetic, multi-channel ERP simulator has been developed specifically for this project.Numerical experiments on synthetic ERP data showed that Bayesian Optimal Combining of trial data filtered using a combination of PCA projection and Kalman Filtering, yielded the best estimates of the underlying ERP signal. This method has been applied to subsets of real Ambulatory Electroencephalography (AEEG) data, recorded while participants performed a range of activities in different environments. From this analysis, the number of trials that need to be collected to observe the P300 amplitude and delay has been calculated for a range of scenarios

    Tracking Control for Non-Minimum Phase System and Brain Computer Interface

    Get PDF
    For generations, humans dreamed about the ability to communicate and interact with machines through thought alone or to create devices that can peer into a person’s mind and thoughts. Researchers have developed new technologies to create brain computer interfaces (BCIs), communication systems that do not depend on the brain’s normal output pathways of peripheral nerves and muscles. The objective of the first part of this thesis is to develop a new BCI based on electroencephalography (EEG) to move a computer cursor over a short training period in real time. The work motivations of this part are to increase: speed and accuracy, as in BCI settings, subject has a few seconds to make a selection with a relatively high accuracy. Recently, improvements have been developed to make EEG more accurate by increasing the spatial resolution. One such improvement is the application of the surface Laplacian to the EEG, the second spatial derivative. Tripolar concentric ring electrodes (TCREs) automatically perform the Laplacian on the surface potentials and provide better spatial selectivity and signal-to-noise ratio than conventional EEG that is recorded with conventional disc electrodes. Another important feature using TCRE is the capability to record the EEG and the TCRE EEG (tEEG) signals concurrently from the same location on the scalp for the same electrical activity coming from the brain. In this part we also demonstrate that tEEG signals can enable users to control a computer cursor rapidly in different directions with significantly higher accuracy during their first session of training for 1D and 2D cursor control. Output tracking control of non-minimum phase systems is a highly challenging problem encountered in many practical engineering applications. Classical inversion techniques provide exact output tracking but lead to internal instability, whereas modern inversion methods provide stable asymptotic tracking but produce large transient errors. Both methods provide an approximation of feedback control, which leads to non robust systems, very sensitive to noise, considerable tracking errors and a significant singularity problem. Aiming at the problem of system inversion to the true system, the objective of the second part of this thesis is to develop a new method based on true inversion for minimum phase system and approximate inversion for non-minimum phase systems. The proposed algorithm is automatic and has minimal computational complexities which make it suitable for real-time control. The process to develop the proposed algorithm is partitioned into (1) minimum phase feedforward inverse filter, and (2) non-minimum phase inversion. In a minimum phase inversion, we consider the design of a feedforward controller to invert the response of a feedback loop that has stable zero locations. The complete control system consists of a feedforward controller cascaded with a closed-loop system. The outputs of the resulting inverse filter are delayed versions of the corresponding reference input signals, and delays are given by the vector relative degree of the closed-loop

    Refinement of neuronal synchronization with gamma oscillations in the medial prefrontal cortex after adolescence

    Get PDF
    The marked anatomical and functional changes taking place in the medial prefrontal cortex (PFC) during adolescence set grounds for the high incidence of neuropsychiatric disorders with adolescent onset. Although circuit refinement through synapse pruning may constitute the anatomical basis for the cognitive differences reported between adolescents and adults, a physiological correlate of circuit refinement at the level of neuronal ensembles has not been demonstrated. We have recorded neuronal activity together with local field potentials in the medial PFC of juvenile and adult mice under anesthesia, which allowed studying local functional connectivity without behavioral or sensorial interference. Entrainment of pyramidal neurons and interneurons to gamma oscillations, but not to theta or beta oscillations, was reduced after adolescence. Interneurons were synchronized to gamma oscillations across a wider area of the PFC than pyramidal neurons, and the span of interneuron synchronization was shorter in adults than juvenile mice. Thus, transition from childhood to adulthood is characterized by reduction of the strength and span of neuronal synchronization specific to gamma oscillations in the mPFC. The more restricted and weak ongoing synchronization in adults may allow a more dynamic rearrangement of neuronal ensembles during behavior and promote parallel processing of information.Fil: de Almeida, Julián. Universidad de Buenos Aires. Facultad de Medicina. Departamento de Ciencias Fisiológicas. Laboratorio de Fisiología de Circuitos Neuronales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Jourdan, Iván. Universidad de Buenos Aires. Facultad de Medicina. Departamento de Ciencias Fisiológicas. Laboratorio de Fisiología de Circuitos Neuronales; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería; ArgentinaFil: Murer, Mario Gustavo. Universidad de Buenos Aires. Facultad de Medicina. Departamento de Ciencias Fisiológicas. Laboratorio de Fisiología de Circuitos Neuronales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Belforte, Juan Emilio. Universidad de Buenos Aires. Facultad de Medicina. Departamento de Ciencias Fisiológicas; Argentina. Universidad de Buenos Aires. Facultad de Medicina. Departamento de Ciencias Fisiológicas. Laboratorio de Fisiología de Circuitos Neuronales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Guidelines for the recording and evaluation of pharmaco-EEG data in man: the International Pharmaco-EEG Society (IPEG)

    Get PDF
    The International Pharmaco-EEG Society (IPEG) presents updated guidelines summarising the requirements for the recording and computerised evaluation of pharmaco-EEG data in man. Since the publication of the first pharmaco-EEG guidelines in 1982, technical and data processing methods have advanced steadily, thus enhancing data quality and expanding the palette of tools available to investigate the action of drugs on the central nervous system (CNS), determine the pharmacokinetic and pharmacodynamic properties of novel therapeutics and evaluate the CNS penetration or toxicity of compounds. However, a review of the literature reveals inconsistent operating procedures from one study to another. While this fact does not invalidate results per se, the lack of standardisation constitutes a regrettable shortcoming, especially in the context of drug development programmes. Moreover, this shortcoming hampers reliable comparisons between outcomes of studies from different laboratories and hence also prevents pooling of data which is a requirement for sufficiently powering the validation of novel analytical algorithms and EEG-based biomarkers. The present updated guidelines reflect the consensus of a global panel of EEG experts and are intended to assist investigators using pharmaco-EEG in clinical research, by providing clear and concise recommendations and thereby enabling standardisation of methodology and facilitating comparability of data across laboratories
    corecore