3,038 research outputs found

    The neural basis of unwanted thoughts during resting state.

    Get PDF
    Human beings are constantly engaged in thought. Sometimes thoughts occur repetitively and can become distressing. Up to now the neural bases of these intrusive or unwanted thoughts is largely unexplored. To study the neural correlates of unwanted thoughts, we acquired resting-state fMRI data of 41 female healthy subjects and assessed the self-reported amount of unwanted thoughts during measurement. We analyzed local connectivity by means of regional homogeneity (ReHo) and functional connectivity of a seed region. More unwanted thoughts (state) were associated with lower ReHo in right dorsolateral prefrontal cortex (DLPFC) and higher ReHo in left striatum (putamen). Additional seed-based analysis revealed higher functional connectivity of the left striatum with left inferior frontal gyrus (IFG) in participants reporting more unwanted thoughts. The state-dependent higher connectivty in left striatum was positively correlated with rumination assessed with a dedicated questionnaire focussing on trait aspects. Unwanted thoughts are associated with activity in the fronto-striatal brain circuitry. The reduction of local connectivity in DLPFC could reflect deficiencies in thought suppression processes, whereas the hightened activity in left striatum could imply an imbalance of gating mechanisms housed in basal ganglia. Its functional connectivity to left IFG is discussed as the result of thought-related speech processes

    The contribution of fMRI in the study of visual categorization and expertise

    Get PDF
    No description supplie

    Distinguishing between cognitive explanations of the problem size effect in mental arithmetic via representational similarity analysis of fMRI data

    Get PDF
    Not all researchers interested in human behavior remain convinced that modern neuroimaging techniques have much to contribute to distinguishing between competing cognitive models for explaining human behavior, especially if one removes reverse inference from the table. Here, we took up this challenge in an attempt to distinguish between two competing accounts of the problem size effect (PSE), a robust finding in investigations of mathematical cognition. The PSE occurs when people solve arithmetic problems and indicates that numerically large problems are solved more slowly and erroneously than small problems. Neurocognitive explanations for the PSE can be categorized into representation-based and process-based views. Behavioral and traditional univariate neural measures have struggled to distinguish between these accounts. By contrast, a representational similarity analysis (RSA) approach with fMRI data provides competing hypotheses that can distinguish between accounts without recourse to reverse inference. To that end, our RSA (but not univariate) results provided clear evidence in favor of the representation-based over the process-based account of the PSE in multiplication; for addition, the results were less clear. Post-hoc similarity analysis distinguished still further between competing representation-based theoretical accounts. Namely, data favored the notion that individual multiplication problems are stored as individual memory traces sensitive to input frequency over a strictly magnitude-based account of memory encoding. Together, these results provide an example of how human neuroimaging evidence can directly inform cognitive-level explanations of a common behavioral phenomenon, the problem size effect. More broadly, these data may expand our understanding of calculation and memory systems in general

    Decoding information in the human hippocampus: a user's guide

    Get PDF
    Multi-voxel pattern analysis (MVPA), or 'decoding', of fMRI activity has gained popularity in the neuroimaging community in recent years. MVPA differs from standard fMRI analyses by focusing on whether information relating to specific stimuli is encoded in patterns of activity across multiple voxels. If a stimulus can be predicted, or decoded, solely from the pattern of fMRI activity, it must mean there is information about that stimulus represented in the brain region where the pattern across voxels was identified. This ability to examine the representation of information relating to specific stimuli (e.g., memories) in particular brain areas makes MVPA an especially suitable method for investigating memory representations in brain structures such as the hippocampus. This approach could open up new opportunities to examine hippocampal representations in terms of their content, and how they might change over time, with aging, and pathology. Here we consider published MVPA studies that specifically focused on the hippocampus, and use them to illustrate the kinds of novel questions that can be addressed using MVPA. We then discuss some of the conceptual and methodological challenges that can arise when implementing MVPA in this context. Overall, we hope to highlight the potential utility of MVPA, when appropriately deployed, and provide some initial guidance to those considering MVPA as a means to investigate the hippocampus
    corecore