12,119 research outputs found

    Analysis of Error Recovery Schemes for Networks on Chips

    Full text link

    Characterization of Coded Random Access with Compressive Sensing based Multi-User Detection

    Get PDF
    The emergence of Machine-to-Machine (M2M) communication requires new Medium Access Control (MAC) schemes and physical (PHY) layer concepts to support a massive number of access requests. The concept of coded random access, introduced recently, greatly outperforms other random access methods and is inherently capable to take advantage of the capture effect from the PHY layer. Furthermore, at the PHY layer, compressive sensing based multi-user detection (CS-MUD) is a novel technique that exploits sparsity in multi-user detection to achieve a joint activity and data detection. In this paper, we combine coded random access with CS-MUD on the PHY layer and show very promising results for the resulting protocol.Comment: Submitted to Globecom 201

    An Analytical Model of Packet Collisions in IEEE 802.15.4 Wireless Networks

    Full text link
    Numerous studies showed that concurrent transmissions can boost wireless network performance despite collisions. While these works provide empirical evidence that concurrent transmissions may be received reliably, existing signal capture models only partially explain the root causes of this phenomenon. We present a comprehensive mathematical model that reveals the reasons and provides insights on the key parameters affecting the performance of MSK-modulated transmissions. A major contribution is a closed-form derivation of the receiver bit decision variable for arbitrary numbers of colliding signals and constellations of power ratios, timing offsets, and carrier phase offsets. We systematically explore the root causes for successful packet delivery under concurrent transmissions across the whole parameter space of the model. We confirm the capture threshold behavior observed in previous studies but also reveal new insights relevant for the design of optimal protocols: We identify capture zones depending not only on the signal power ratio but also on time and phase offsets.Comment: Accepted for publication in the IEEE Transactions on Wireless Communications under the title "On the Reception of Concurrent Transmissions in Wireless Sensor Networks.

    Cross-Sender Bit-Mixing Coding

    Full text link
    Scheduling to avoid packet collisions is a long-standing challenge in networking, and has become even trickier in wireless networks with multiple senders and multiple receivers. In fact, researchers have proved that even {\em perfect} scheduling can only achieve R=O(1ln⁥N)\mathbf{R} = O(\frac{1}{\ln N}). Here NN is the number of nodes in the network, and R\mathbf{R} is the {\em medium utilization rate}. Ideally, one would hope to achieve R=Θ(1)\mathbf{R} = \Theta(1), while avoiding all the complexities in scheduling. To this end, this paper proposes {\em cross-sender bit-mixing coding} ({\em BMC}), which does not rely on scheduling. Instead, users transmit simultaneously on suitably-chosen slots, and the amount of overlap in different user's slots is controlled via coding. We prove that in all possible network topologies, using BMC enables us to achieve R=Θ(1)\mathbf{R}=\Theta(1). We also prove that the space and time complexities of BMC encoding/decoding are all low-order polynomials.Comment: Published in the International Conference on Information Processing in Sensor Networks (IPSN), 201

    Design techniques for low-power systems

    Get PDF
    Portable products are being used increasingly. Because these systems are battery powered, reducing power consumption is vital. In this report we give the properties of low-power design and techniques to exploit them on the architecture of the system. We focus on: minimizing capacitance, avoiding unnecessary and wasteful activity, and reducing voltage and frequency. We review energy reduction techniques in the architecture and design of a hand-held computer and the wireless communication system including error control, system decomposition, communication and MAC protocols, and low-power short range networks

    A B-ISDN-compatible modem/codec

    Get PDF
    Coded modulation techniques for development of a broadband integrated services digital network (B-ISDN)-compatible modem/codec are investigated. The selected baseband processor system must support transmission of 155.52 Mbit/s of data over an INTELSAT 72-MHz transponder. Performance objectives and fundamental system parameters, including channel symbol rate, code rate, and the modulation scheme are determined. From several candidate codes, a concatenated coding system consisting of a coded octal phase shift keying modulation as the inner code and a high rate Reed-Solomon as the outer code is selected and its bit error rate performance is analyzed by computer simulation. The hardware implementation of the decoder for the selected code is also described

    Deep Space Network information system architecture study

    Get PDF
    The purpose of this article is to describe an architecture for the Deep Space Network (DSN) information system in the years 2000-2010 and to provide guidelines for its evolution during the 1990s. The study scope is defined to be from the front-end areas at the antennas to the end users (spacecraft teams, principal investigators, archival storage systems, and non-NASA partners). The architectural vision provides guidance for major DSN implementation efforts during the next decade. A strong motivation for the study is an expected dramatic improvement in information-systems technologies, such as the following: computer processing, automation technology (including knowledge-based systems), networking and data transport, software and hardware engineering, and human-interface technology. The proposed Ground Information System has the following major features: unified architecture from the front-end area to the end user; open-systems standards to achieve interoperability; DSN production of level 0 data; delivery of level 0 data from the Deep Space Communications Complex, if desired; dedicated telemetry processors for each receiver; security against unauthorized access and errors; and highly automated monitor and control

    Energy efficiency of error correction on wireless systems

    Get PDF
    Since high error rates are inevitable to the wireless environment, energy-efficient error-control is an important issue for mobile computing systems. We have studied the energy efficiency of two different error correction mechanisms and have measured the efficiency of an implementation in software. We show that it is not sufficient to concentrate on the energy efficiency of error control mechanisms only, but the required extra energy consumed by the wireless interface should be incorporated as well. A model is presented that can be used to determine an energy-efficient error correction scheme of a minimal system consisting of a general purpose processor and a wireless interface. As an example we have determined these error correction parameters on two systems with a WaveLAN interfac
    • 

    corecore