275 research outputs found

    A review for solar panel fire accident prevention in large-scale PV applications

    Get PDF
    Due to the wide applications of solar photovoltaic (PV) technology, safe operation and maintenance of the installed solar panels become more critical as there are potential menaces such as hot spot effects and DC arcs, which may cause fire accidents to the solar panels. In order to minimize the risks of fire accidents in large scale applications of solar panels, this review focuses on the latest techniques for reducing hot spot effects and DC arcs. The risk mitigation solutions mainly focus on two aspects: structure reconfiguration and faulty diagnosis algorithm. The first is to reduce the hot spot effect by adjusting the space between two PV modules in a PV array or relocate some PV modules. The second is to detect the DC arc fault before it causes fire. There are three types of arc detection techniques, including physical analysis, neural network analysis, and wavelet detection analysis. Through these detection methods, the faulty PV cells can be found in a timely manner thereby reducing the risk of PV fire. Based on the review, some precautions to prevent solar panel related fire accidents in large-scale solar PV plants that are located adjacent to residential and commercial areas

    LÞsninger pÄ utfordringer knyttet til snÞ for Þkt utbredelse av solcelleanlegg

    Get PDF
    Photovoltaic (PV) systems are becoming more competitive due to a cost reduction of the technology and increased electricity prices. As the technology extends to cold climates with lower irradiance, a knowledge gap in how PV systems are affected by the environment arises, which can limit PV system deployment. This thesis focuses on the impact of snow, which is perhaps the most distinguished environmental impact compared to the high irradiance climates where PV systems traditionally have been deployed. An interdisciplinary perspective is used to investigate different snow challenges connected to the deployment of PV in cold climates, and how they can be resolved. One of the challenges explored in the thesis is the development of snowdrifts in ground mounted PV plants. This challenge is relevant for PV systems installed in exposed snowdrift climates. To document the challenge itself, field measurements of snowdrift development in a small-scale PV plant in a polar climate were performed. The study concludes that PV plants designed with established principles commonly used at lower latitudes are susceptible to snowdrift accumulation. To achieve a snowdrift resilient plant, the design of the plant itself can be adapted. This strategy is further investigated in a numerical study using Computational Fluid Dynamics and energy yield simulations to quantify the impact of changing the design parameters on the snowdrift accumulation conditions and the energy yield. It is found that all the design parameters can be adjusted to improve the snowdrift conditions, with variable effect on the yield. Based on these results, adaptions to local climate conditions can be made to increase the snowdrift resiliency of the PV plant while minimizing an adverse impact on the yield, enabling the use of ground mounted PV plants in exposed snowdrift climates. Another of the investigated snow challenges is the use of active snow mitigation with PV systems on existing building roofs. Such systems reduce heavy snow loads so that roofs which lack structural capacity can be utilised for PV power production. In the thesis, PV snow mitigation systems are analysed in two separate studies focusing on the influence of active snow mitigation with PV systems on (i) the structural safety of building roofs, and (ii) the energy consumption and production compared to ordinary PV systems. The results provide a foundation for estimating which structures and climates PV snow mitigation systems are suitable. The research address former knowledge gaps for the use of PV snow mitigation systems and can contribute to increased utilisation of roof area for PV power production in the built environment. Snow contributes to an uncertainty in the yield of PV systems as it is difficult to predict snow shedding from the PV modules. There are several models for estimating yield losses in PV systems based on empirical data of snow shedding, but due to being developed based on single systems, the applicability to different configurations in different snow climates are limited. With the intent of achieving a model with wider applicability, an existing snow loss model is improved by considering the influence of snow depth on the snow shedding. By applying the model to seven different PV systems in different snow climates, the error in estimation of snow loss is reduced by 23 percentage points compared to the original model. The model contributes to reducing the uncertainty in PV yield estimations without the need for system specific empirical data of snow shedding. The overall contribution of the work is to resolve specific snow challenges which limit the deployment of PV systems in cold climates. Additional snow challenges have been identified during the work with the thesis, and recommendations for paths for future work are suggested. With ongoing research on this topic, the limitations for PV deployment in cold climates can be resolved and PV systems can contribute to increased renewable energy production in cold climates.Reduserte produksjonskostnader og Þkte strÞmpriser Þker konkurransedyktigheten til solcelleanlegg. Solcelleanlegg har vÊrt mest utbredt i, og delvis blitt utviklet for, varme klima med mye strÄling, men nÄr solcelleanlegg sprer seg til kaldere klima begrenses bruken av teknologien av manglende kunnskap om klimapÄkjenninger. En av de stÞrste forandringene i klimapÄkjenninger i kalde klima kontra varme klima er pÄvirkningen fra snÞ. Denne avhandlingen omhandler hvordan snÞ begrenser bruk av solcelleanlegg og hvordan slike utfordringer kan lÞses. En av utfordringene som undersÞkes er snÞfonndannelse i bakkemonterte solcelleanlegg. For Ä undersÞke hvor utsatt solcelleanlegg er for snÞfonndannelse er det gjennomfÞrt feltforsÞk pÄ et bakkemontert solkraftverk i et polart klima. Studien viser at solcelleanlegg som er designet ut ifra samme prinsipper som pÄ lavere breddegrader gir en utforming som er svÊrt utsatt for snÞfonndannelse. En mÄte Ä redusere risikoen for snÞfonndannelse pÄ er Ä tilpasse designet av anlegget. For Ä undersÞke denne tilpasningsstrategien er det gjennomfÞrt en numerisk studie som anvender fluidmekanikk- og energiytelsessimuleringer til Ä kvantifisere hvilken pÄvirkning det gir Ä endre utformingen av solkraftverket. Resultatene viser at alle de undersÞkte designparameterne i solcelleanlegg kan tilpasses for Ä redusere risikoen for snÞfonndannelse, men at de forskjellige designparameterne gir forskjellig pÄvirkning pÄ energiytelsen. Resultatene fra disse studiene gir et grunnlag for Ä tilpasse utformingen av solkraftverk til klima med betydelig snÞdriv samtidig som ytelsen ivaretas. En annen utfordring som undersÞkes er hvordan solcelleanlegg med snÞsmeltefunksjon kan benyttes pÄ eksisterende takkonstruksjoner som ikke tÄler den totale vekten av snÞlasten og solcelleanlegget. I avhandlingen undersÞkes det hvordan slike solcelleanlegg pÄvirker konstruksjonssikkerheten til bygg ved Ä benytte statistiske metoder. Resultatene tydeliggjÞr pÄvirkningen styringen og designet av slike anlegg har pÄ konstruksjonssikkerheten til bygg, samt hvordan forskjellige kapasitets- og lastforutsetninger pÄvirker utbyttet av slike anlegg. I tillegg til pÄvirkningen pÄ konstruksjonssikkerhet undersÞkes energibehovet og hvilken potensiell produksjonsÞkning det medfÞrer Ä aktivt redusere snÞlasten pÄ tak i en studie som benytter en kombinasjon av numeriske verktÞy. Resultatene viser hvilke type klimatiske forhold som gir lavest energibruk og hÞyest Þkning i produksjon. En sammenstilling av resultatene fra de to studiene danner et grunnlag for Ä vurdere hvilke konstruksjoner og klima som egner seg for Ä benytte solcelleanlegg med snÞsmeltefunksjon. Forskningen reduserer kunnskapshull for bruken av solcelleanlegg pÄ tak med begrenset bÊreevne og kan bidra til Þkt utnyttelse av eksisterende takflater til solstrÞmproduksjon. Den siste undersÞkte utfordringen omhandler modellering av pÄvirkningen snÞ har pÄ solcelleanleggs ytelse. En begrensing med mange eksisterende modeller for ytelsestap fra snÞ er at de er utviklet med empiriske data fra ett type snÞklima og ikke nÞdvendigvis gir gode resultater nÄr de anvendes i andre klimaforhold. Dette forsÞkes Ä forbedres ved Ä videreutvikle en eksisterende snÞtapsmodell til Ä ta hensyn til snÞdybde i avsklidningen av snÞ fra solcellepanelene. Sammenlignet med den opprinnelige snÞtapsmodellen reduseres nÞyaktigheten til modellen med 23 prosentpoeng nÄr den anvendes til syv forskjellige solcelleanlegg. Modellen kan bidra til Ä redusere usikkerheten til ytelsen av solcelleanlegg i forskjellige type snÞklima. Det overordnede bidraget til avhandlingen er Ä lÞse utfordringer snÞ gir for bruk av solcelleanlegg. Gjennom arbeidet har det blitt oppdaget ytterligere utfordringer. PÄ bakgrunn av dette foreslÄs det hva som er aktuelt Ä fokusere pÄ i fremtidig forskning pÄ solcelleanlegg i klima med snÞ. Videre forskning pÄ temaet kan fÞre til at bruken av solcelleanlegg i mindre grad hindres av snÞ og til Ä redusere klimautslipp i kalde klima

    Producing Poly-Silicon from Silane in a Fluidized Bed Reactor

    Get PDF

    Control and prevention of ice formation and accretion on heat exchangers for ventilation systems

    Get PDF

    Heating monumental churches : indoor climate and preservation of cultural heritage

    Get PDF

    Flat-Plate Solar Collectors for Water Heating with Improved Heat Transfer for Application in Climatic Conditions of the Mediterranean Region

    Get PDF
    The aim of this research project is to improve the thermal performance of passive flat plate solar collectors using a novel cost effective enhanced heat transfer technique. The project work focuses on the process of energy conversion from the collector to the working fluid. This is accomplished by employing an aluminium grid placed in the channels of a collector to induce a gradient of heat capacitance. This novel technique is tested both theoretically by means of simplistic designs using Computational Fluid Dynamics (CFD) and experimentally using two unglazed collectors. One collector has the aluminium net inserted in its channels and it is tested against an identical conventional collector in order to have a direct comparison at the same time. The obtained CFD data and the experimental findings are coupled and show a good agreement. All the obtained results are validated with the literature. The results both theoretical and experimental demonstrate an enhancement in the heat transfer coefficient by 9 % resulting to an increase in the output temperature of the working fluid in the collector with the metallic insertion. Other parameters such as the Nusselt and Raleigh numbers supported these findings. Three novel expressions that correlate the Nusselt and the Rayleigh number, for different heat fluxes, were developed using data from CFD and experimental results. These correlations can be applied on any flat plate collector with an aluminium grid in its pipes, in order to predict its performance. Furthermore an existing lumped parameters model that predicts the output temperature of a collector was simplified and improved
    • 

    corecore