11,272 research outputs found

    Contribution of reactive and proactive control to children's working memory performance:Insight from item recall durations in response sequence planning

    Get PDF
    The present study addressed whether developmental improvement in working memory span task performance relies upon a growing ability to proactively plan response sequences during childhood. Two hundred thirteen children completed a working memory span task in which they used a touchscreen to reproduce orally presented sequences of animal names. Children were assessed longitudinally at 7 time points between 3 and 10 years of age. Twenty-one young adults also completed the same task. Proactive response sequence planning was assessed by comparing recall durations for the 1st item (preparatory interval) and subsequent items. At preschool age, the preparatory interval was generally shorter than subsequent item recall durations, whereas it was systematically longer during elementary school and in adults. Although children mostly approached the task reactively at preschool, they proactively planned response sequences with increasing efficiency from age 7 on, like adults. These findings clarify the nature of the changes in executive control that support working memory performance with age

    What has been missed for predicting human attention in viewing driving clips?

    Get PDF
    Recent research progress on the topic of human visual attention allocation in scene perception and its simulation is based mainly on studies with static images. However, natural vision requires us to extract visual information that constantly changes due to egocentric movements or dynamics of the world. It is unclear to what extent spatio-temporal regularity, an inherent regularity in dynamic vision, affects human gaze distribution and saliency computation in visual attention models. In this free-viewing eye-tracking study we manipulated the spatio-temporal regularity of traffic videos by presenting them in normal video sequence, reversed video sequence, normal frame sequence, and randomised frame sequence. The recorded human gaze allocation was then used as the ‘ground truth’ to examine the predictive ability of a number of state-of-the-art visual attention models. The analysis revealed high inter-observer agreement across individual human observers, but all the tested attention models performed significantly worse than humans. The inferior predictability of the models was evident from indistinguishable gaze prediction irrespective of stimuli presentation sequence, and weak central fixation bias. Our findings suggest that a realistic visual attention model for the processing of dynamic scenes should incorporate human visual sensitivity with spatio-temporal regularity and central fixation bias

    Smoothness perception : investigation of beat rate effect on frame rate perception

    Get PDF
    Despite the complexity of the Human Visual System (HVS), research over the last few decades has highlighted a number of its limitations. These limitations can be exploited in computer graphics to significantly reduce computational cost and thus required rendering time, without a viewer perceiving any difference in resultant image quality. Furthermore, cross-modal interaction between different modalities, such as the influence of audio on visual perception, has also been shown as significant both in psychology and computer graphics. In this paper we investigate the effect of beat rate on temporal visual perception, i.e. frame rate perception. For the visual quality and perception evaluation, a series of psychophysical experiments was conducted and the data analysed. The results indicate that beat rates in some cases do affect temporal visual perception and that certain beat rates can be used in order to reduce the amount of rendering required to achieve a perceptual high quality. This is another step towards a comprehensive understanding of auditory-visual cross-modal interaction and could be potentially used in high-fidelity interactive multi-sensory virtual environments

    Fully-automatic inverse tone mapping algorithm based on dynamic mid-level tone mapping

    Get PDF
    High Dynamic Range (HDR) displays can show images with higher color contrast levels and peak luminosities than the common Low Dynamic Range (LDR) displays. However, most existing video content is recorded and/or graded in LDR format. To show LDR content on HDR displays, it needs to be up-scaled using a so-called inverse tone mapping algorithm. Several techniques for inverse tone mapping have been proposed in the last years, going from simple approaches based on global and local operators to more advanced algorithms such as neural networks. Some of the drawbacks of existing techniques for inverse tone mapping are the need for human intervention, the high computation time for more advanced algorithms, limited low peak brightness, and the lack of the preservation of the artistic intentions. In this paper, we propose a fully-automatic inverse tone mapping operator based on mid-level mapping capable of real-time video processing. Our proposed algorithm allows expanding LDR images into HDR images with peak brightness over 1000 nits, preserving the artistic intentions inherent to the HDR domain. We assessed our results using the full-reference objective quality metrics HDR-VDP-2.2 and DRIM, and carrying out a subjective pair-wise comparison experiment. We compared our results with those obtained with the most recent methods found in the literature. Experimental results demonstrate that our proposed method outperforms the current state-of-the-art of simple inverse tone mapping methods and its performance is similar to other more complex and time-consuming advanced techniques

    CHORUS Deliverable 4.5: Report of the 3rd CHORUS Conference

    Get PDF
    The third and last CHORUS conference on Multimedia Search Engines took place from the 26th to the 27th of May 2009 in Brussels, Belgium. About 100 participants from 15 European countries, the US, Japan and Australia learned about the latest developments in the domain. An exhibition of 13 stands presented 16 research projects currently ongoing around the world

    Impaired perceptual learning in a mouse model of Fragile X syndrome is mediated by parvalbumin neuron dysfunction and is reversible.

    Get PDF
    To uncover the circuit-level alterations that underlie atypical sensory processing associated with autism, we adopted a symptom-to-circuit approach in the Fmr1-knockout (Fmr1-/-) mouse model of Fragile X syndrome. Using a go/no-go task and in vivo two-photon calcium imaging, we find that impaired visual discrimination in Fmr1-/- mice correlates with marked deficits in orientation tuning of principal neurons and with a decrease in the activity of parvalbumin interneurons in primary visual cortex. Restoring visually evoked activity in parvalbumin cells in Fmr1-/- mice with a chemogenetic strategy using designer receptors exclusively activated by designer drugs was sufficient to rescue their behavioral performance. Strikingly, human subjects with Fragile X syndrome exhibit impairments in visual discrimination similar to those in Fmr1-/- mice. These results suggest that manipulating inhibition may help sensory processing in Fragile X syndrome

    Change blindness: eradication of gestalt strategies

    Get PDF
    Arrays of eight, texture-defined rectangles were used as stimuli in a one-shot change blindness (CB) task where there was a 50% chance that one rectangle would change orientation between two successive presentations separated by an interval. CB was eliminated by cueing the target rectangle in the first stimulus, reduced by cueing in the interval and unaffected by cueing in the second presentation. This supports the idea that a representation was formed that persisted through the interval before being 'overwritten' by the second presentation (Landman et al, 2003 Vision Research 43149–164]. Another possibility is that participants used some kind of grouping or Gestalt strategy. To test this we changed the spatial position of the rectangles in the second presentation by shifting them along imaginary spokes (by ±1 degree) emanating from the central fixation point. There was no significant difference seen in performance between this and the standard task [F(1,4)=2.565, p=0.185]. This may suggest two things: (i) Gestalt grouping is not used as a strategy in these tasks, and (ii) it gives further weight to the argument that objects may be stored and retrieved from a pre-attentional store during this task

    Information accrual from the period preceding racket-ball contact for tennis ground strokes: Inferences from stochastic masking

    Get PDF
    Previous research suggests the existence of an expert anticipatory advantage, whereby skilled sportspeople are able to predict an upcoming action by utilising cues contained in their opponent’s body kinematics. This ability is often inferred from “occlusion” experiments: Information is systematically removed from first-person videos of an opponent, for example by stopping a tennis video at the point of racket-ball contact, yet performance, such as discrimination of shot direction, remains above chance. In this study, we assessed the expert anticipatory advantage for tennis ground strokes via a modified approach, known as “bubbles”, in which information is randomly removed from videos at in each trial. The bubbles profile is then weighted by trial outcome (i.e. a correct vs. incorrect discrimination) and combined across trials into a classification array, revealing the potential cues informing the decision. In two experiments (both with N = 34 skilled tennis players) we utilised either temporal or spatial bubbles, applying them to videos running from 0.8 s to 0 s before the point of racket-ball contact (cf. Jalali et al., 2018). Results from the spatial experiment were somewhat suggestive of accrual from the torso region of the body, but were not compelling. Results from the temporal experiment, on the other hand, were clear: information was accrued mainly during the period immediately prior to racket-ball contact. This result is broadly consistent with prior work using non-stochastic approaches to video manipulation, and cannot be an artifact of temporal smear from information accrued after racket-ball contact, because no such information was present
    • 

    corecore