788 research outputs found

    Analysis of distributed ADMM algorithm for consensus optimization in presence of error

    Get PDF
    ADMM is a popular algorithm for solving convex optimization problems. Applying this algorithm to distributed consensus optimization problem results in a fully distributed iterative solution which relies on processing at the nodes and communication between neighbors. Local computations usually suffer from different types of errors, due to e.g., observation or quantization noise, which can degrade the performance of the algorithm. In this work, we focus on analyzing the convergence behavior of distributed ADMM for consensus optimization in presence of additive node error. We specifically show that (a noisy) ADMM converges linearly under certain conditions and also examine the associated convergence point. Numerical results are provided which demonstrate the effectiveness of the presented analysis

    Asynchronous Distributed Optimization over Lossy Networks via Relaxed ADMM: Stability and Linear Convergence

    Full text link
    In this work we focus on the problem of minimizing the sum of convex cost functions in a distributed fashion over a peer-to-peer network. In particular, we are interested in the case in which communications between nodes are prone to failures and the agents are not synchronized among themselves. We address the problem proposing a modified version of the relaxed ADMM, which corresponds to the Peaceman-Rachford splitting method applied to the dual. By exploiting results from operator theory, we are able to prove the almost sure convergence of the proposed algorithm under general assumptions on the distribution of communication loss and node activation events. By further assuming the cost functions to be strongly convex, we prove the linear convergence of the algorithm in mean to a neighborhood of the optimal solution, and provide an upper bound to the convergence rate. Finally, we present numerical results testing the proposed method in different scenarios.Comment: To appear in IEEE Transactions on Automatic Contro

    A Partition-Based Implementation of the Relaxed ADMM for Distributed Convex Optimization over Lossy Networks

    Full text link
    In this paper we propose a distributed implementation of the relaxed Alternating Direction Method of Multipliers algorithm (R-ADMM) for optimization of a separable convex cost function, whose terms are stored by a set of interacting agents, one for each agent. Specifically the local cost stored by each node is in general a function of both the state of the node and the states of its neighbors, a framework that we refer to as `partition-based' optimization. This framework presents a great flexibility and can be adapted to a large number of different applications. We show that the partition-based R-ADMM algorithm we introduce is linked to the relaxed Peaceman-Rachford Splitting (R-PRS) operator which, historically, has been introduced in the literature to find the zeros of sum of functions. Interestingly, making use of non expansive operator theory, the proposed algorithm is shown to be provably robust against random packet losses that might occur in the communication between neighboring nodes. Finally, the effectiveness of the proposed algorithm is confirmed by a set of compelling numerical simulations run over random geometric graphs subject to i.i.d. random packet losses.Comment: Full version of the paper to be presented at Conference on Decision and Control (CDC) 201

    Fast ADMM Algorithm for Distributed Optimization with Adaptive Penalty

    Full text link
    We propose new methods to speed up convergence of the Alternating Direction Method of Multipliers (ADMM), a common optimization tool in the context of large scale and distributed learning. The proposed method accelerates the speed of convergence by automatically deciding the constraint penalty needed for parameter consensus in each iteration. In addition, we also propose an extension of the method that adaptively determines the maximum number of iterations to update the penalty. We show that this approach effectively leads to an adaptive, dynamic network topology underlying the distributed optimization. The utility of the new penalty update schemes is demonstrated on both synthetic and real data, including a computer vision application of distributed structure from motion.Comment: 8 pages manuscript, 2 pages appendix, 5 figure

    Distributed Solution of Large-Scale Linear Systems via Accelerated Projection-Based Consensus

    Get PDF
    Solving a large-scale system of linear equations is a key step at the heart of many algorithms in machine learning, scientific computing, and beyond. When the problem dimension is large, computational and/or memory constraints make it desirable, or even necessary, to perform the task in a distributed fashion. In this paper, we consider a common scenario in which a taskmaster intends to solve a large-scale system of linear equations by distributing subsets of the equations among a number of computing machines/cores. We propose an accelerated distributed consensus algorithm, in which at each iteration every machine updates its solution by adding a scaled version of the projection of an error signal onto the nullspace of its system of equations, and where the taskmaster conducts an averaging over the solutions with momentum. The convergence behavior of the proposed algorithm is analyzed in detail and analytically shown to compare favorably with the convergence rate of alternative distributed methods, namely distributed gradient descent, distributed versions of Nesterov's accelerated gradient descent and heavy-ball method, the block Cimmino method, and ADMM. On randomly chosen linear systems, as well as on real-world data sets, the proposed method offers significant speed-up relative to all the aforementioned methods. Finally, our analysis suggests a novel variation of the distributed heavy-ball method, which employs a particular distributed preconditioning, and which achieves the same theoretical convergence rate as the proposed consensus-based method
    • …
    corecore