67 research outputs found

    The Discontinuous Galerkin Method for Maxwell\u27s Equations: Application to Bodies of Revolution and Kerr-Nonlinearities

    Get PDF
    Die unstetige Galerkinmethode (UGM) wird auf die rotationssymmetrischen und Kerr- Maxwell-Gleichungen angewandt. Essentiell ist hierbei der numerische Fluss. Für die rotationssymmetrischen Maxwell-Gleichungen wird ein exakter Fluss vorgestellt und unter Ausnutzung der Symmetrie der Aufwand reduziert. Für die Kerr-Maxwell-Gleichungen führt der exakte numerische Fluss auf eine ineffiziente UGM, weswegen approximative Flüsse miteinander verglichen werden. Wir erhalten optimale Konvergenz

    Discontinuous Galerkin Methods with Generalized Numerical Fluxes for the Vlasov-Viscous Burgers' System

    Full text link
    In this paper, semi-discrete numerical scheme for the approximation of the periodic Vlasov-viscous Burgers' system is developed and analyzed. The scheme is based on the coupling of discontinuous Galerkin approximations for the Vlasov equation and local discontinuous Galerkin approximations for the viscous Burgers' equation. Both these methods use generalized numerical fluxes. The proposed scheme is both mass and momentum conservative. Based on generalized Gauss-Radau projections, optimal rates of convergence in the case of smooth compactly supported initial data are derived. Finally, computational results confirm our theoretical findings.Comment: 35 pages, 16 figure

    High-order conservative finite difference GLM-MHD schemes for cell-centered MHD

    Get PDF
    We present and compare third- as well as fifth-order accurate finite difference schemes for the numerical solution of the compressible ideal MHD equations in multiple spatial dimensions. The selected methods lean on four different reconstruction techniques based on recently improved versions of the weighted essentially non-oscillatory (WENO) schemes, monotonicity preserving (MP) schemes as well as slope-limited polynomial reconstruction. The proposed numerical methods are highly accurate in smooth regions of the flow, avoid loss of accuracy in proximity of smooth extrema and provide sharp non-oscillatory transitions at discontinuities. We suggest a numerical formulation based on a cell-centered approach where all of the primary flow variables are discretized at the zone center. The divergence-free condition is enforced by augmenting the MHD equations with a generalized Lagrange multiplier yielding a mixed hyperbolic/parabolic correction, as in Dedner et al. (J. Comput. Phys. 175 (2002) 645-673). The resulting family of schemes is robust, cost-effective and straightforward to implement. Compared to previous existing approaches, it completely avoids the CPU intensive workload associated with an elliptic divergence cleaning step and the additional complexities required by staggered mesh algorithms. Extensive numerical testing demonstrate the robustness and reliability of the proposed framework for computations involving both smooth and discontinuous features.Comment: 32 pages, 14 figure, submitted to Journal of Computational Physics (Aug 7 2009

    Discontinuous Galerkin methods for convection-diffusion equations and applications in petroleum engineering

    Get PDF
    This dissertation contains research in discontinuous Galerkin (DG) methods applying to convection-diffusion equations. It contains both theoretical analysis and applications. Initially, we develop a conservative local discontinuous Galerkin (LDG) method for the coupled system of compressible miscible displacement problem in two space dimensions. The main difficulty is how to deal with the discontinuity of approximations of velocity, u, in the convection term across the cell interfaces. To overcome the problems, we apply the idea of LDG with IMEX time marching using the diffusion term to control the convection term. Optimal error estimates in Linfinity(0, T; L2) norm for the solution and the auxiliary variables will be derived. Then, high-order bound-preserving (BP) discontinuous Galerkin (DG) methods for the coupled system of compressible miscible displacements on triangular meshes will be developed. There are three main difficulties to make the concentration of each component between 0 and 1. Firstly, the concentration of each component did not satisfy a maximum-principle. Secondly, the first-order numerical flux was difficult to construct. Thirdly, the classical slope limiter could not be applied to the concentration of each component. To conquer these three obstacles, we first construct special techniques to preserve two bounds without using the maximum-principle-preserving technique. The time derivative of the pressure was treated as a source of the concentration equation. Next, we apply the flux limiter to obtain high-order accuracy using the second-order flux as the lower order one instead of using the first-order flux. Finally, L2-projection of the porosity and constructed special limiters that are suitable for multi-component fluid mixtures were used. Lastly, a new LDG method for convection-diffusion equations on overlapping mesh introduced in [J. Du, Y. Yang and E. Chung, Stability analysis and error estimates of local discontinuous Galerkin method for convection-diffusion equations on overlapping meshes, BIT Numerical Mathematics (2019)] showed that the convergence rates cannot be improved if the dual mesh is constructed by using the midpoint of the primitive mesh. They provided several ways to gain optimal convergence rates but the reason for accuracy degeneration is still unclear. We will use Fourier analysis to analyze the scheme for linear parabolic equations with periodic boundary conditions in one space dimension. To investigate the reason for the accuracy degeneration, we explicitly write out the error between the numerical and exact solutions. Moreover, some superconvergence points that may depend on the perturbation constant in the construction of the dual mesh were also found out

    HIGH ORDER SHOCK CAPTURING SCHEMES FOR HYPERBOLIC CONSERVATION LAWS AND THE APPLICATION IN OPEN CHANNEL FLOWS

    Get PDF
    Many applications in engineering practice can be described by thehyperbolic partial differential equations (PDEs). Numerical modeling of this typeof equations often involves large gradients or shocks, which makes it achallenging task for conventional numerical methods to accurately simulate suchsystems. Thus developing accurate and efficient shock capturing numericalschemes becomes important for the study of hyperbolic equations.In this dissertation, a detailed study of the numerical methods for linearand nonlinear unsteady hyperbolic equations was carried out. A new finitedifference shock capturing scheme of finite volume style was developed. Thisscheme is based on the high order Pad?? type compact central finite differencemethod with the weighted essentially non-oscillatory (WENO) reconstruction toeliminate non-physical oscillations near the discontinuities while maintain stablesolution in the smooth areas. The unconditionally stable semi-implicit Crank-Nicolson (CN) scheme is used for time integration.The theoretical development was conducted based on one-dimensionalhomogeneous scalar equation and system equations. Discussions were alsoextended to include source terms and to deal with problems of higher dimension.For the treatment of source terms, Strang splitting was used. For multidimensionalequations, the ?? -form Douglas-Gunn alternating direction implicit(ADI) method was employed. To compare the performance of the scheme withENO type interpolation, the current numerical framework was also applied usingENO reconstruction.The numerical schemes were tested on 1-D and 2-D benchmark problems,as well as published experimental results. The simulated results show thecapability of the proposed scheme to resolve discontinuities while maintainingaccuracy in smooth regions. Comparisons with the experimental results validatethe method for dam break problems. It is concluded that the proposed scheme isa useful tool for solving hyperbolic equations in general, and from engineeringapplication perspective it provides a new way of modeling open channel flows

    On a Taylor Weak Statement for Finite Element Computations in Gas Dynamics

    Get PDF
    The Taylor Weak Statement has been developed as a potential unified approach for approximate computation of fluid flows. It is verified to contain a variety of numerical dissipative methods developed for advection problems by specific identification of its expansion parameters. Generalized Fourier modal analysis has been completed in one space dimension for both semi-and fully-discrete approximations, from which the flux limiter method is herein developed and evaluated for finite element computations. Its application to 1- and 2-dimensional scalar models is investigated for continuous and discontinuous initial value problems, and its use for the Euler equation system of gas dynamics in 1- and 2-dimensional cases is demonstrated

    On the Advective Component of Active Flux Schemes for Nonlinear Hyperbolic Conservation Laws

    Full text link
    A new class of numerical methods called Active Flux (AF) is investigated for nonlinear hyperbolic conservation laws. The AF method is designed specifically to address the aspect that most modern compressible flow methods fail to do; the multidimensionality aspect. It addresses the shortcoming by employing a two stage update process. In the first stage, a nonconservative form of the system is introduced to provide the flexibility to pursue distinct numerical approaches for flow processes with differing physics. Because each process is treated separately, the numerical method can be appropriately formed to reflect each type of physics and to provide the maximal stability. The method is completed with the conservation update to produce a third-order accurate scheme. The AF advection scheme is founded on the characteristic tracing method, a semi-Lagrangian method, which has long been used for developing numerical methods for hyperbolic problems. The first known AF method for advection, Scheme V by van Leer, is revisited as a part of the development of the scheme. Details of Scheme V are examined closely, and new improvements are made for the multidimensional nonlinear advection scheme. A detailed study of the nonlinear system of equations is made possible by the pressureless Euler system, which is the advective component of the Euler system. It serves as a stepping stone for the Euler system, and all necessary details of the nonlinear system are explored. Lastly, an extension to the Euler system is presented where a novel nonlinear operator splitting method is introduced to correctly blend the contributions of the nonlinear advection and acoustic processes. The AF method, as a result, produces a maximally stable, third-order accurate method for the multidimensional Euler system. Some guiding principles of limiting are presented. Because two types of flow feature are separately treated, the limiting process must also be kept separate. Advective problems obeying natural bounding principles are treated differently from acoustic problems with no explicit bounding principles. Distinct limiting approaches are explored along with discussions.PHDAerospace EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/138695/1/jmaeng_1.pd
    corecore