516 research outputs found

    Ultra-Efficient Cascaded Buck-Boost Converter

    Get PDF
    This thesis presents various techniques to achieve ultra-high-efficiency for Cascaded-Buck-Boost converter. A rigorous loss model with component non linearity is developed and validated experimentally. An adaptive-switching-frequency control is discussed to optimize weighted efficiency. Some soft-switching techniques are discussed. A low-profile planar-nanocrystalline inductor is developed and various design aspects of core and copper design are discussed. Finite-element-method is used to examine and visualize the inductor design. By implementing the above, a peak efficiency of over 99.2 % is achieved with a power density of 6 kW/L and a maximum profile height of 7 mm is reported. This converter finds many applications because of its versatility: allowing bidirectional power flow and the ability to step-up or step-down voltages in either direction

    Zero-voltage-switching buck converter with low-voltage stress using coupled inductor

    Get PDF
    This study presents a new zero-voltage-switching (ZVS) buck converter. The proposed converter utilises a coupled inductor to implement the output filter inductor as well as the auxiliary inductor which is commonly employed to realise ZVS for switches. Additional magnetic core for the auxiliary inductor in traditional ZVS converters is eliminated and hence reduced cost is achieved. Moreover, thanks to the series connection between the input and output, the switch voltage stress in the steady state is reduced and thus the ZVS operation can be easier achieved. Then the leakage inductor current circulating in the auxiliary switch is decreased, contributing to reduced conduction losses. In particular, low-voltage rating devices with low on-state resistance can be adopted to further improve efficiency in applications with non-zero output voltage all the time, such as the battery charger. Furthermore, the reverse-recovery problem of the diode is significantly alleviated by the leakage inductor of coupled inductor. In the study, operation principle and steady-state analysis of the proposed converter are presented in detail. Meanwhile, design considerations are given to obtain circuit parameters. Finally, simulations and experiments on a 200 W prototype circuit validate the advantages and effectiveness of the proposed converter

    Advanced Control Techniques for Efficiency and Power Density Improvement of a Three-Phase Microinverter

    Get PDF
    Inverters are widely used in photovoltaic (PV) based power generation systems. Most of these systems have been based on medium to high power string inverters. Microinverters are gaining popularity over their string inverter counterparts in PV based power generation systems due to maximized energy harvesting, high system reliability, modularity, and simple installation. They can be deployed on commercial buildings, residential rooftops, electric poles, etc and have a huge potential market. Emerging trend in power electronics is to increase power density and efficiency while reducing cost. A powerful tool to achieve these objectives is the development of an advanced control system for power electronics. In low power applications such as solar microinverters, increasing the switching frequency can reduce the size of passive components resulting in higher power density. However, switching losses and electromagnetic interference (EMI) may increase as a consequence of higher switching frequency. Soft switching techniques have been proposed to overcome these issues. This dissertation presents several innovative control techniques which are used to increase efficiency and power density while reducing cost. Dynamic dead time optimization and dual zone modulation techniques have been proposed in this dissertation to significantly improve the microinverter efficiency. In dynamic dead time optimization technique, pulse width modulation (PWM) dead times are dynamically adjusted as a function of load current to minimize MOSFET body diode conduction time which reduces power dissipation. This control method also improves total harmonic distortion (THD) of the inverter output current. To further improve the microinverter efficiency, a dual-zone modulation has been proposed which introduces one more soft-switching transition and lower inductor peak current compared to the other boundary conduction mode (BCM) modulation methods. In addition, an advanced DC link voltage control has been proposed to increase the microinverter power density. This concept minimizes the storage capacitance by allowing greater voltage ripple on the DC link. Therefore, the microinverter reliability can be significantly increased by replacing electrolytic capacitors with film capacitors. These control techniques can be readily implemented on any inverter, motor controller, or switching power amplifier. Since there is no circuit modification involved in implementation of these control techniques and can be easily added to existing controller firmware, it will be very attractive to any potential licensees

    Experimental and analytical performance evaluation of SiC power devices in the matrix converter

    Get PDF
    With the commercial availability of SiC power devices, their acceptance is expected grows in consideration to the excellent low switching loss, high temperature operation and high voltage rating capabilities of these devices. This paper presents the comparative performance evaluation of different SiC power devices in matrix converter at various temperatures and switching frequencies. To this end, firstly, gate or base drive circuits for Normally-off SiC JFET, SiC MOSFET and SiC BJT which taking into account the special demands for these devices are presented. Then, three 2-phase to 1-phase matrix converters are built with different SiC power devices to measure the switching waveforms and power losses for them at different temperatures and switching frequencies. Based on the measured data, three different SiC power devices are compared in terms of switching times, conduction and switching losses and efficiency at different temperatures and switching frequencies. Furthermore, a theoretical investigation of the power losses of three phase matrix converter with Normally-off SiC JFET, SiC MOSFET, SiC BJT and Si IGBT is described. The power losses estimation indicates that a 7 KW matrix converter would potentially have an efficiency of approximately 96% in high switching frequency if equipped with SiC devices
    • …
    corecore