167 research outputs found

    A general analytical model of adaptive wormhole routing in k-ary n-cubes

    Get PDF
    Several analytical models of fully adaptive routing have recently been proposed for k-ary n-cubes and hypercube networks under the uniform traffic pattern. Although,hypercube is a special case of k-ary n-cubes topology, the modeling approach for hypercube is more accurate than karyn-cubes due to its simpler structure. This paper proposes a general analytical model to predict message latency in wormhole-routed k-ary n-cubes with fully adaptive routing that uses a similar modeling approach to hypercube. The analysis focuses Duato's fully adaptive routing algorithm [12], which is widely accepted as the most general algorithm for achieving adaptivity in wormhole-routed networks while allowing for an efficient router implementation. The proposed model is general enough that it can be used for hypercube and other fully adaptive routing algorithms

    K-ary n-cube based off-chip communications architecture for high-speed packet processors

    Get PDF
    We present a detailed study of Higgs boson production in association with a single top quark at the LHC, at next-to-leading order accuracy in QCD. We consider total and differential cross sections, at the parton level as well as by matching short distance events to parton showers, for both t-channel and s-channel production. We provide predictions relevant for the LHC at 13 TeV together with a thorough evaluation of the residual uncertainties coming from scale variation, parton distributions, strong coupling constant and heavy quark masses. In addition, for t-channel production, we compare results as obtained in the 4-flavour and 5-flavour schemes, pinning down the most relevant differences between them. Finally, we study the sensitivity to a non-standard-model relative phase between the Higgs couplings to the top quark and to the weak bosons

    A Dag Based Wormhole Routing Strategy

    Get PDF
    The wormhole routing (WR) technique is replacing the hitherto popular storeand- forward routing in message passing multicomputers. This is because the latter has speed and node size constraints. The wormhole routing is, on the other hand, susceptible to deadlock. A few WR schemes suggested recently in the literature, concentrate on avoiding deadlock. This thesis presents a Directed Acyclic Graph (DAG) based WR technique. At low traffic levels the proposed method follows a minimal path. But the routing is adaptive at higher traffic levels. We prove that the algorithm is deadlock-free. This method is compared for its performance with a deterministic algorithm which is a de facto standard. We also compare its implementation costs with other adaptive routing algorithms and the relative merits and demerits are highlighted in the text

    Performance evaluation of distributed crossbar switch hypermesh

    Get PDF
    The interconnection network is one of the most crucial components in any multicomputer as it greatly influences the overall system performance. Several recent studies have suggested that hypergraph networks, such as the Distributed Crossbar Switch Hypermesh (DCSH), exhibit superior topological and performance characteristics over many traditional graph networks, e.g. k-ary n-cubes. Previous work on the DCSH has focused on issues related to implementation and performance comparisons with existing networks. These comparisons have so far been confined to deterministic routing and unicast (one-to-one) communication. Using analytical models validated through simulation experiments, this thesis extends that analysis to include adaptive routing and broadcast communication. The study concentrates on wormhole switching, which has been widely adopted in practical multicomputers, thanks to its low buffering requirement and the reduced dependence of latency on distance under low traffic. Adaptive routing has recently been proposed as a means of improving network performance, but while the comparative evaluation of adaptive and deterministic routing has been widely reported in the literature, the focus has been on graph networks. The first part of this thesis deals with adaptive routing, developing an analytical model to measure latency in the DCSH, and which is used throughout the rest of the work for performance comparisons. Also, an investigation of different routing algorithms in this network is presented. Conventional k-ary n-cubes have been the underlying topology of contemporary multicomputers, but it is only recently that adaptive routing has been incorporated into such systems. The thesis studies the relative performance merits of the DCSH and k-ary n-cubes under adaptive routing strategy. The analysis takes into consideration real-world factors, such as router complexity and bandwidth constraints imposed by implementation technology. However, in any network, the routing of unicast messages is not the only factor in traffic control. In many situations (for example, parallel iterative algorithms, memory update and invalidation procedures in shared memory systems, global notification of network errors), there is a significant requirement for broadcast traffic. The DCSH, by virtue of its use of hypergraph links, can implement broadcast operations particularly efficiently. The second part of the thesis examines how the DCSH and k-ary n-cube performance is affected by the presence of a broadcast traffic component. In general, these studies demonstrate that because of their relatively high diameter, k-ary n-cubes perform poorly when message lengths are short. This is consistent with earlier more simplistic analyses which led to the proposal for the express-cube, an enhancement of the basic k-ary n-cube structure, which provides additional express channels, allowing messages to bypass groups of nodes along their paths. The final part of the thesis investigates whether this "partial bypassing" can compete with the "total bypassing" capability provided inherently by the DCSH topology

    The Effect Of Hot Spots On The Performance Of Mesh--Based Networks

    Get PDF
    Direct network performance is affected by different design parameters which include number of virtual channels, number of ports, routing algorithm, switching technique, deadlock handling technique, packet size, and buffer size. Another factor that affects network performance is the traffic pattern. In this thesis, we study the effect of hotspot traffic on system performance. Specifically, we study the effect of hotspot factor, hotspot number, and hot spot location on the performance of mesh-based networks. Simulations are run on two network topologies, both the mesh and torus. We pay more attention to meshes because they are widely used in commercial machines. Comparisons between oblivious wormhole switching and chaotic packet switching are reported. Overall packet switching proved to be more efficient in terms of throughput when compared to wormhole switching. In the case of uniform random traffic, it is shown that the differences between chaotic and oblivious routing are indistinguishable. Networks with low number of hotspots show better performance. As the number of hotspots increases network latency tends to increase. It is shown that when the hotspot factor increases, performance of packet switching is better than that of wormhole switching. It is also shown that the location of hotspots affects network performance particularly with the oblivious routers since their achieved latencies proved to be more vulnerable to changes in the hotspot location. It is also shown that the smaller the size of the network the earlier network saturation occurs. Further, it is shown that the chaos router’s adaptivity is useful in this case. Finally, for tori, performance is not greatly affected by hotspot presence. This is mostly due to the symmetric nature of tori

    Near-optimal broadcast in all-port wormhole-routed hypercubes using error-correcting codes

    Full text link
    A new broadcasting method is presented for hypercubes with wormhole routing mechanism. The communication model assumed allows an n-dimensional hypercube to have at most n concurrent I/O communication along its ports. It assumes a distance insensitivity of (n + 1) with no intermediate reception capability for the nodes. The approach is based on determination of the set of nodes called stations in the hypercube. Once stations are identified, node disjoint paths are formed from the source to all stations. The broadcasting is accomplished first by sending the message to all stations, which will inform the rest of the nodes. To establish node-disjoint paths between the source node and all stations, we introduce a new routing strategy. We prove that multicasting can be done in one routing step as long as the number of destination nodes are at most n in an n-dimensional hypercube. The number of broadcasting steps using our routing is equal to or smaller than that obtained in an earlier work; this number is optimal for all hypercube dimensions n ≤ 12, except for n = 10

    Mathematical modelling for TM topology under uniform and hotspot traffic patterns

    Get PDF
    Interconnection networks are introduced when dealing with the connection of a significant number of processors in massively parallel systems. TM topology is one of the latest interconnection networks to solve the deadlock problem and achieve high performance in massively parallel systems. This topology is derived from a Torus topology with removing cyclic channel dependencies. In this paper, we derive a mathematical model for TM topology under uniform and hotspot traffic patterns to compute the average delay. The average delay is formulated from the sum of the average delay of network, the average waiting time of the source node and the average degree of virtual channels. The results obtained from the mathematical model exhibit a close agreement with those predicted by simulation. In addition, sufficient simulation results are presented to revisit the TM topology performance under various traffic patterns
    • …
    corecore