329 research outputs found

    Visual Analysis of Variability and Features of Climate Simulation Ensembles

    Get PDF
    This PhD thesis is concerned with the visual analysis of time-dependent scalar field ensembles as occur in climate simulations. Modern climate projections consist of multiple simulation runs (ensemble members) that vary in parameter settings and/or initial values, which leads to variations in the resulting simulation data. The goal of ensemble simulations is to sample the space of possible futures under the given climate model and provide quantitative information about uncertainty in the results. The analysis of such data is challenging because apart from the spatiotemporal data, also variability has to be analyzed and communicated. This thesis presents novel techniques to analyze climate simulation ensembles visually. A central question is how the data can be aggregated under minimized information loss. To address this question, a key technique applied in several places in this work is clustering. The first part of the thesis addresses the challenge of finding clusters in the ensemble simulation data. Various distance metrics lend themselves for the comparison of scalar fields which are explored theoretically and practically. A visual analytics interface allows the user to interactively explore and compare multiple parameter settings for the clustering and investigate the resulting clusters, i.e. prototypical climate phenomena. A central contribution here is the development of design principles for analyzing variability in decadal climate simulations, which has lead to a visualization system centered around the new Clustering Timeline. This is a variant of a Sankey diagram that utilizes clustering results to communicate climatic states over time coupled with ensemble member agreement. It can reveal several interesting properties of the dataset, such as: into how many inherently similar groups the ensemble can be divided at any given time, whether the ensemble diverges in general, whether there are different phases in the time lapse, maybe periodicity, or outliers. The Clustering Timeline is also used to compare multiple climate simulation models and assess their performance. The Hierarchical Clustering Timeline is an advanced version of the above. It introduces the concept of a cluster hierarchy that may group the whole dataset down to the individual static scalar fields into clusters of various sizes and densities recording the nesting relationship between them. One more contribution of this work in terms of visualization research is, that ways are investigated how to practically utilize a hierarchical clustering of time-dependent scalar fields to analyze the data. To this end, a system of different views is proposed which are linked through various interaction possibilities. The main advantage of the system is that a dataset can now be inspected at an arbitrary level of detail without having to recompute a clustering with different parameters. Interesting branches of the simulation can be expanded to reveal smaller differences in critical clusters or folded to show only a coarse representation of the less interesting parts of the dataset. The last building block of the suit of visual analysis methods developed for this thesis aims at a robust, (largely) automatic detection and tracking of certain features in a scalar field ensemble. Techniques are presented that I found can identify and track super- and sub-levelsets. And I derive “centers of action” from these sets which mark the location of extremal climate phenomena that govern the weather (e.g. Icelandic Low and Azores High). The thesis also presents visual and quantitative techniques to evaluate the temporal change of the positions of these centers; such a displacement would be likely to manifest in changes in weather. In a preliminary analysis with my collaborators, we indeed observed changes in the loci of the centers of action in a simulation with increased greenhouse gas concentration as compared to pre-industrial concentration levels

    Climate Informatics

    Get PDF
    The impacts of present and potential future climate change will be one of the most important scientific and societal challenges in the 21st century. Given observed changes in temperature, sea ice, and sea level, improving our understanding of the climate system is an international priority. This system is characterized by complex phenomena that are imperfectly observed and even more imperfectly simulated. But with an ever-growing supply of climate data from satellites and environmental sensors, the magnitude of data and climate model output is beginning to overwhelm the relatively simple tools currently used to analyze them. A computational approach will therefore be indispensable for these analysis challenges. This chapter introduces the fledgling research discipline climate informatics: collaborations between climate scientists and machine learning researchers in order to bridge this gap between data and understanding. We hope that the study of climate informatics will accelerate discovery in answering pressing questions in climate science

    Data-driven methods for hydrologic inference and discovery

    Get PDF

    Spatio-temporal precipitation patterns: from teleconnections to improved long-term forecasts

    Get PDF
    The standardized precipitation index (SPI) is an important yet easy-to-calculate means to describe wet or dry conditions in very different climates. In this work, a new scheme for obtaining improved forecasts of this index is developed. The methodology is tested over Russia and West Africa, proving that it can be successfully applied to different forecasting models and world regions. For testing, we use two forecasting models: the semi-implicit semi-Lagrangian vorticity-divergence (SL–AV) model of the Hydrometeorological Centre of Russia and the Institute of Numerical Mathematics of the Russian Academy of Sciences for Russia and the Climate Forecast System Version 2 (CFSv2) of the National Center for Environmental Prediction (NCEP) for West Africa. Based on hindcast simulations of both models, we demonstrate relatively poor skills in obtaining direct zero to three month lead-time SPI forecasts in the regions of interest during summer season. In order to improve the accuracy of these forecasts, we utilize surface temperature, mean sea level pressure and 500 hPa geopotential height fields, obtained from the outputs of both models. The spatial patterns of crosscorrelations between previously obtained climatological fields and our target variable (SPI-1) are studied to identify informative co-variates, potentially affecting monthly scale precipitation variability. The cross-correlation structures between the different fields reveal relevant interdependencies between SPI-1, sea surface temperature, mean sea level pressure and 500 hPa geopotential height in different regions. Subsequently, we employ two different regression models based on statistical post-processing of regional climate model output. In the first model, we consider all combinations of pairs of the previously identified predictors in a set of linear regression equations, which generates an ensemble of individual SPI-1 forecasts. The second model is based on a multiple linear regression approach comprising the dependency between all predictor variables and the predictand (SPI-1) in a single equation. The resulting SPI-1 forecasts obtained from both regression models are subsequently analysed in both deterministic and probabilistic ways and checked by various verification metrics. We identify that the first proposed model provides a significant improvement in the SPI forecasting, pointing to the potential for its implementation in operational monthly precipitation forecasts

    xxAI - Beyond Explainable AI

    Get PDF
    This is an open access book. Statistical machine learning (ML) has triggered a renaissance of artificial intelligence (AI). While the most successful ML models, including Deep Neural Networks (DNN), have developed better predictivity, they have become increasingly complex, at the expense of human interpretability (correlation vs. causality). The field of explainable AI (xAI) has emerged with the goal of creating tools and models that are both predictive and interpretable and understandable for humans. Explainable AI is receiving huge interest in the machine learning and AI research communities, across academia, industry, and government, and there is now an excellent opportunity to push towards successful explainable AI applications. This volume will help the research community to accelerate this process, to promote a more systematic use of explainable AI to improve models in diverse applications, and ultimately to better understand how current explainable AI methods need to be improved and what kind of theory of explainable AI is needed. After overviews of current methods and challenges, the editors include chapters that describe new developments in explainable AI. The contributions are from leading researchers in the field, drawn from both academia and industry, and many of the chapters take a clear interdisciplinary approach to problem-solving. The concepts discussed include explainability, causability, and AI interfaces with humans, and the applications include image processing, natural language, law, fairness, and climate science.https://digitalcommons.unomaha.edu/isqafacbooks/1000/thumbnail.jp

    xxAI - Beyond Explainable AI

    Get PDF
    This is an open access book. Statistical machine learning (ML) has triggered a renaissance of artificial intelligence (AI). While the most successful ML models, including Deep Neural Networks (DNN), have developed better predictivity, they have become increasingly complex, at the expense of human interpretability (correlation vs. causality). The field of explainable AI (xAI) has emerged with the goal of creating tools and models that are both predictive and interpretable and understandable for humans. Explainable AI is receiving huge interest in the machine learning and AI research communities, across academia, industry, and government, and there is now an excellent opportunity to push towards successful explainable AI applications. This volume will help the research community to accelerate this process, to promote a more systematic use of explainable AI to improve models in diverse applications, and ultimately to better understand how current explainable AI methods need to be improved and what kind of theory of explainable AI is needed. After overviews of current methods and challenges, the editors include chapters that describe new developments in explainable AI. The contributions are from leading researchers in the field, drawn from both academia and industry, and many of the chapters take a clear interdisciplinary approach to problem-solving. The concepts discussed include explainability, causability, and AI interfaces with humans, and the applications include image processing, natural language, law, fairness, and climate science

    Extratropical Storm-Generated Swells Induced Vulnerability Effects on the Tropical Islands of Hawaii.

    Get PDF
    Ph.D. Thesis. University of Hawaiʻi at Mānoa 2018
    corecore