25,238 research outputs found

    Of bits and bugs

    Get PDF
    Pur-α is a nucleic acid-binding protein involved in cell cycle control, transcription, and neuronal function. Initially no prediction of the three-dimensional structure of Pur-α was possible. However, recently we solved the X-ray structure of Pur-α from the fruitfly Drosophila melanogaster and showed that it contains a so-called PUR domain. Here we explain how we exploited bioinformatics tools in combination with X-ray structure determination of a bacterial homolog to obtain diffracting crystals and the high-resolution structure of Drosophila Pur-α. First, we used sensitive methods for remote-homology detection to find three repetitive regions in Pur-α. We realized that our lack of understanding how these repeats interact to form a globular domain was a major problem for crystallization and structure determination. With our information on the repeat motifs we then identified a distant bacterial homolog that contains only one repeat. We determined the bacterial crystal structure and found that two of the repeats interact to form a globular domain. Based on this bacterial structure, we calculated a computational model of the eukaryotic protein. The model allowed us to design a crystallizable fragment and to determine the structure of Drosophila Pur-α. Key for success was the fact that single repeats of the bacterial protein self-assembled into a globular domain, instructing us on the number and boundaries of repeats to be included for crystallization trials with the eukaryotic protein. This study demonstrates that the simpler structural domain arrangement of a distant prokaryotic protein can guide the design of eukaryotic crystallization constructs. Since many eukaryotic proteins contain multiple repeats or repeating domains, this approach might be instructive for structural studies of a range of proteins

    AGMIAL: implementing an annotation strategy for prokaryote genomes as a distributed system

    Get PDF
    We have implemented a genome annotation system for prokaryotes called AGMIAL. Our approach embodies a number of key principles. First, expert manual annotators are seen as a critical component of the overall system; user interfaces were cyclically refined to satisfy their needs. Second, the overall process should be orchestrated in terms of a global annotation strategy; this facilitates coordination between a team of annotators and automatic data analysis. Third, the annotation strategy should allow progressive and incremental annotation from a time when only a few draft contigs are available, to when a final finished assembly is produced. The overall architecture employed is modular and extensible, being based on the W3 standard Web services framework. Specialized modules interact with two independent core modules that are used to annotate, respectively, genomic and protein sequences. AGMIAL is currently being used by several INRA laboratories to analyze genomes of bacteria relevant to the food-processing industry, and is distributed under an open source license

    Lotus tenuis tolerates combined salinity and waterlogging: maintaining O2 transport to roots and expression of an NHX1-like gene contribute to regulation of Na+ transport

    Get PDF
    Salinity and waterlogging interact to reduce growth for most crop and pasture species. The combination of these stresses often cause a large increase in the rate of Na+ and Cl− transport to shoots; however, the mechanisms responsible for this are largely unknown. To identify mechanisms contributing to the adverse interaction between salinity and waterlogging, we compared two Lotus species with contrasting tolerances when grown under saline (200 mM NaCl) and O2-deficient (stagnant) treatments. Measurements of radial O2 loss (ROL) under stagnant conditions indicated that more O2 reaches root tips of Lotus tenuis, compared with Lotus corniculatus. Better internal aeration would contribute to maintaining Na+ and Cl− transport processes in roots of L. tenuis exposed to stagnant-plus-NaCl treatments. L. tenuis root Na+ concentrations after stagnant-plus-NaCl treatment (200 mM) were 17% higher than L. corniculatus, with 55% of the total plant Na+ being accumulated in roots, compared with only 39% for L. corniculatus. L. tenuis accumulated more Na+ in roots, presumably in vacuoles, thereby reducing transport to the shoot (25% lower than L. corniculatus). A candidate gene for vacuole Na+ accumulation, an NHX1-like gene, was cloned from L. tenuis and identity established via sequencing and yeast complementation. Transcript levels of NHX1 in L. tenuis roots under stagnant-plus-NaCl treatment were the same as for aerated NaCl, whereas L. corniculatus roots had reduced transcript levels. Enhanced O2 transport to roots enables regulation of Na+ transport processes in L. tenuis roots, contributing to tolerance to combined salinity and waterlogging stresses

    Two-dimensional gel electrophoresis in proteomics: A tutorial

    Get PDF
    Two-dimensional electrophoresis of proteins has preceded, and accompanied, the birth of proteomics. Although it is no longer the only experimental scheme used in modern proteomics, it still has distinct features and advantages. The purpose of this tutorial paper is to guide the reader through the history of the field, then through the main steps of the process, from sample preparation to in-gel detection of proteins, commenting the constraints and caveats of the technique. Then the limitations and positive features of two-dimensional electrophoresis are discussed (e.g. its unique ability to separate complete proteins and its easy interfacing with immunoblotting techniques), so that the optimal type of applications of this technique in current and future proteomics can be perceived. This is illustrated by a detailed example taken from the literature and commented in detail. This Tutorial is part of the International Proteomics Tutorial Programme (IPTP 2)

    Structural Prediction of Protein–Protein Interactions by Docking: Application to Biomedical Problems

    Get PDF
    A huge amount of genetic information is available thanks to the recent advances in sequencing technologies and the larger computational capabilities, but the interpretation of such genetic data at phenotypic level remains elusive. One of the reasons is that proteins are not acting alone, but are specifically interacting with other proteins and biomolecules, forming intricate interaction networks that are essential for the majority of cell processes and pathological conditions. Thus, characterizing such interaction networks is an important step in understanding how information flows from gene to phenotype. Indeed, structural characterization of protein–protein interactions at atomic resolution has many applications in biomedicine, from diagnosis and vaccine design, to drug discovery. However, despite the advances of experimental structural determination, the number of interactions for which there is available structural data is still very small. In this context, a complementary approach is computational modeling of protein interactions by docking, which is usually composed of two major phases: (i) sampling of the possible binding modes between the interacting molecules and (ii) scoring for the identification of the correct orientations. In addition, prediction of interface and hot-spot residues is very useful in order to guide and interpret mutagenesis experiments, as well as to understand functional and mechanistic aspects of the interaction. Computational docking is already being applied to specific biomedical problems within the context of personalized medicine, for instance, helping to interpret pathological mutations involved in protein–protein interactions, or providing modeled structural data for drug discovery targeting protein–protein interactions.Spanish Ministry of Economy grant number BIO2016-79960-R; D.B.B. is supported by a predoctoral fellowship from CONACyT; M.R. is supported by an FPI fellowship from the Severo Ochoa program. We are grateful to the Joint BSC-CRG-IRB Programme in Computational Biology.Peer ReviewedPostprint (author's final draft

    Functional divergence in the role of N-linked glycosylation in smoothened signaling

    Get PDF
    The G protein-coupled receptor (GPCR) Smoothened (Smo) is the requisite signal transducer of the evolutionarily conserved Hedgehog (Hh) pathway. Although aspects of Smo signaling are conserved from Drosophila to vertebrates, significant differences have evolved. These include changes in its active sub-cellular localization, and the ability of vertebrate Smo to induce distinct G protein-dependent and independent signals in response to ligand. Whereas the canonical Smo signal to Gli transcriptional effectors occurs in a G protein-independent manner, its non-canonical signal employs Gαi. Whether vertebrate Smo can selectively bias its signal between these routes is not yet known. N-linked glycosylation is a post-translational modification that can influence GPCR trafficking, ligand responsiveness and signal output. Smo proteins in Drosophila and vertebrate systems harbor N-linked glycans, but their role in Smo signaling has not been established. Herein, we present a comprehensive analysis of Drosophila and murine Smo glycosylation that supports a functional divergence in the contribution of N-linked glycans to signaling. Of the seven predicted glycan acceptor sites in Drosophila Smo, one is essential. Loss of N-glycosylation at this site disrupted Smo trafficking and attenuated its signaling capability. In stark contrast, we found that all four predicted N-glycosylation sites on murine Smo were dispensable for proper trafficking, agonist binding and canonical signal induction. However, the under-glycosylated protein was compromised in its ability to induce a non-canonical signal through Gαi, providing for the first time evidence that Smo can bias its signal and that a post-translational modification can impact this process. As such, we postulate a profound shift in N-glycan function from affecting Smo ER exit in flies to influencing its signal output in mice

    In Vivo Validation of a Computationally Predicted Conserved Ath5 Target Gene Set

    Get PDF
    So far, the computational identification of transcription factor binding sites is hampered by the complexity of vertebrate genomes. Here we present an in silico procedure to predict target sites of a transcription factor in complex genomes using its binding site. In a first step sequence, comparison of closely related genomes identifies the binding sites in conserved cis-regulatory regions (phylogenetic footprinting). Subsequently, more remote genomes are introduced into the comparison to identify highly conserved and therefore putatively functional binding sites (phylogenetic filtering). When applied to the binding site of atonal homolog 5 (Ath5 or ATOH7), this procedure efficiently filters evolutionarily conserved binding sites out of more than 300,000 instances in a vertebrate genome. We validate a selection of the linked target genes by showing coexpression with and transcriptional regulation by Ath5. Finally, chromatin immunoprecipitation demonstrates the occupancy of the target gene promoters by Ath5. Thus, our procedure, applied to whole genomes, is a fast and predictive tool to in silico filter the target genes of a given transcription factor with defined binding site
    corecore