69 research outputs found

    Aggregation with fragment retransmission for very high-speed WLANs

    Get PDF
    In upcoming very high-speed WLANs the physical layer (PHY) rate may reach 600 Mbps. To achieve high efficiency at the medium access control (MAC) layer, we identify fundamental properties that must be satisfied by any CSMA/CA based MAC layer and develop a novel scheme called Aggregation with Fragment Retransmission (AFR). In the AFR scheme, multiple packets are aggregated into and transmitted in a single large frame. If errors happen during the transmission, only the corrupted fragments of the large frame are retransmitted. An analytic model is developed to evaluate the throughput and delay performance of AFR over a noisy channel, and to compare AFR with competing schemes in the literature. Optimal frame and fragment sizes are calculated using this model. Transmission delays are minimised by using a zero-waiting mechanism where frames are transmitted immediately once the MAC wins a transmission opportunity. We prove that zero waiting can achieve maximum throughput. As a complement to the theoretical analysis, we investigate by simulations the impact of AFR on the performance of realistic application traffic with diverse requirements. We have implemented the AFR scheme in the NS-2 simulator and present detailed results for TCP, VoIP and HDTV traffic. The AFR scheme described was developed as part of the 802.11n working group work. The analysis presented here is general enough to be extended to the proposed scheme in the upcoming 802.11n standard. Trends indicated by our simulation results should extend to any well-designed aggregation scheme

    Improving Performance for CSMA/CA Based Wireless Networks

    Get PDF
    Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) based wireless networks are becoming increasingly ubiquitous. With the aim of supporting rich multimedia applications such as high-definition television (HDTV, 20Mbps) and DVD (9.8Mbps), one of the technology trends is towards increasingly higher bandwidth. Some recent IEEE 802.11n proposals seek to provide PHY rates of up to 600 Mbps. In addition to increasing bandwidth, there is also strong interest in extending the coverage of CSMA/CA based wireless networks. One solution is to relay traffic via multiple intermediate stations if the sender and the receiver are far apart. The so called “mesh” networks based on this relay-based approach, if properly designed, may feature both “high speed” and “large coverage” at the same time. This thesis focusses on MAC layer performance enhancements in CSMA/CA based networks in this context. Firstly, we observe that higher PHY rates do not necessarily translate into corresponding increases in MAC layer throughput due to the overhead of the CSMA/CA based MAC/PHY layers. To mitigate the overhead, we propose a novel MAC scheme whereby transported information is partially acknowledged and retransmitted. Theoretical analysis and extensive simulations show that the proposed MAC approach can achieve high efficiency (low MAC overhead) for a wide range of channel variations and realistic traffic types. Secondly, we investigate the close interaction between the MAC layer and the buffer above it to improve performance for real world traffic such as TCP. Surprisingly, the issue of buffer sizing in 802.11 wireless networks has received little attention in the literature yet it poses fundamentally new challenges compared to buffer sizing in wired networks. We propose a new adaptive buffer sizing approach for 802.11e WLANs that maintains a high level of link utilisation, while minimising queueing delay. Thirdly, we highlight that gross unfairness can exist between competing flows in multihop mesh networks even if we assume that orthogonal channels are used in neighbouring hops. That is, even without inter-channel interference and hidden terminals, multi-hop mesh networks which aim to offer a both “high speed” and “large coverage” are not achieved. We propose the use of 802.11e’s TXOP mechanism to restore/enfore fairness. The proposed approach is implementable using off-the-shelf devices and fully decentralised (requires no message passing)

    LINK ADAPTATION IN WIRELESS NETWORKS: A CROSS-LAYER APPROACH

    Get PDF
    Conventional Link Adaptation Techniques in wireless networks aim to overcome harsh link conditions caused by physical environmental properties, by adaptively regulating modulation, coding and other signal and protocol specific parameters. These techniques are essential for the overall performance of the networks, especially for environments where the ambient noise level is high or the noise level changes rapidly. Link adaptation techniques answer the questions of What to change? and When to change? in order to improve the present layer performance. Once these decisions are made, other layers are expected to function perfectly with the new communication channel conditions. In our work, we have shown that this assumption does not always hold; and provide two mechanisms that lessen the negative outcomes caused by these decisions. Our first solution, MORAL, is a MAC layer link adaptation technique which utilizes the physical transmission information in order to create differentiation between wireless users with different communication capabilities. MORAL passively collects information from its neighbors and re-aligns the MAC layer parameters according to the observed conditions. MORAL improves the fairness and total throughput of the system through distributing the mutually shared network assets to the wireless users in a fairer manner, according to their capabilities. Our second solution, Data Rate and Fragmentation Aware Ad-hoc Routing protocol, is a network layer link adaptation technique which utilizes the physical transmission information in order to differentiate the wireless links according to their communication capabilities. The proposed mechanism takes the physical transmission parameters into account during the path creation process and produces energy-efficient network paths. The research demonstrated in this dissertation contributes to our understanding of link adaptation techniques and broadens the scope of such techniques beyond simple, one-step physical parameter adjustments. We have designed and implemented two cross-layer mechanisms that utilize the physical layer information to better adapt to the varying channel conditions caused by physical link adaptation mechanisms. These mechanisms has shown that even though the Link Adaptation concept starts at the physical layer, its effects are by no means restricted to this layer; and the wireless networks can benefit considerably by expanding the scope of this concept throughout the entire network stack

    Quality of service differentiation for multimedia delivery in wireless LANs

    Get PDF
    Delivering multimedia content to heterogeneous devices over a variable networking environment while maintaining high quality levels involves many technical challenges. The research reported in this thesis presents a solution for Quality of Service (QoS)-based service differentiation when delivering multimedia content over the wireless LANs. This thesis has three major contributions outlined below: 1. A Model-based Bandwidth Estimation algorithm (MBE), which estimates the available bandwidth based on novel TCP and UDP throughput models over IEEE 802.11 WLANs. MBE has been modelled, implemented, and tested through simulations and real life testing. In comparison with other bandwidth estimation techniques, MBE shows better performance in terms of error rate, overhead, and loss. 2. An intelligent Prioritized Adaptive Scheme (iPAS), which provides QoS service differentiation for multimedia delivery in wireless networks. iPAS assigns dynamic priorities to various streams and determines their bandwidth share by employing a probabilistic approach-which makes use of stereotypes. The total bandwidth to be allocated is estimated using MBE. The priority level of individual stream is variable and dependent on stream-related characteristics and delivery QoS parameters. iPAS can be deployed seamlessly over the original IEEE 802.11 protocols and can be included in the IEEE 802.21 framework in order to optimize the control signal communication. iPAS has been modelled, implemented, and evaluated via simulations. The results demonstrate that iPAS achieves better performance than the equal channel access mechanism over IEEE 802.11 DCF and a service differentiation scheme on top of IEEE 802.11e EDCA, in terms of fairness, throughput, delay, loss, and estimated PSNR. Additionally, both objective and subjective video quality assessment have been performed using a prototype system. 3. A QoS-based Downlink/Uplink Fairness Scheme, which uses the stereotypes-based structure to balance the QoS parameters (i.e. throughput, delay, and loss) between downlink and uplink VoIP traffic. The proposed scheme has been modelled and tested through simulations. The results show that, in comparison with other downlink/uplink fairness-oriented solutions, the proposed scheme performs better in terms of VoIP capacity and fairness level between downlink and uplink traffic
    corecore