1,950 research outputs found

    MIMO-UFMC Transceiver Schemes for Millimeter Wave Wireless Communications

    Full text link
    The UFMC modulation is among the most considered solutions for the realization of beyond-OFDM air interfaces for future wireless networks. This paper focuses on the design and analysis of an UFMC transceiver equipped with multiple antennas and operating at millimeter wave carrier frequencies. The paper provides the full mathematical model of a MIMO-UFMC transceiver, taking into account the presence of hybrid analog/digital beamformers at both ends of the communication links. Then, several detection structures are proposed, both for the case of single-packet isolated transmission, and for the case of multiple-packet continuous transmission. In the latter situation, the paper also considers the case in which no guard time among adjacent packets is inserted, trading off an increased level of interference with higher values of spectral efficiency. At the analysis stage, the several considered detection structures and transmission schemes are compared in terms of bit-error-rate, root-mean-square-error, and system throughput. The numerical results show that the proposed transceiver algorithms are effective and that the linear MMSE data detector is capable of well managing the increased interference brought by the removal of guard times among consecutive packets, thus yielding throughput gains of about 10 - 13 %\%. The effect of phase noise at the receiver is also numerically assessed, and it is shown that the recursive implementation of the linear MMSE exhibits some degree of robustness against this disturbance

    Mapping DSP algorithms to a reconfigurable architecture Adaptive Wireless Networking (AWGN)

    Get PDF
    This report will discuss the Adaptive Wireless Networking project. The vision of the Adaptive Wireless Networking project will be given. The strategy of the project will be the implementation of multiple communication systems in dynamically reconfigurable heterogeneous hardware. An overview of a wireless LAN communication system, namely HiperLAN/2, and a Bluetooth communication system will be given. Possible implementations of these systems in a dynamically reconfigurable architecture are discussed. Suggestions for future activities in the Adaptive Wireless Networking project are also given

    On the structure, convergence and performance of an adaptive I/Q mismatch corrector

    Get PDF
    The I/Q mismatches in quadrature radio receivers results in finite and usually insufficient image rejection, degrading the performance greatly. In this paper we present a detailed analysis of the Blind-Source Separation (BSS) based mismatch corrector in terms of its structure, convergence and performance. The results indicate that the mismatch can be effectively compensated during the normal operation as well as in the rapidly changing environments. Since the compensation is carried out before any modulation specific processing, the proposed method works with all standard modulation formats and is amenable to low-power implementations

    Application of adaptive equalisation to microwave digital radio

    Get PDF

    Channel estimation techniques for filter bank multicarrier based transceivers for next generation of wireless networks

    Get PDF
    A dissertation submitted to Faculty of Engineering and the Built Environment, University of the Witwatersrand, Johannesburg, in fulfillment of the requirements for the degree of Master of Science in Engineering (Electrical and Information Engineering), August 2017The fourth generation (4G) of wireless communication system is designed based on the principles of cyclic prefix orthogonal frequency division multiplexing (CP-OFDM) where the cyclic prefix (CP) is used to combat inter-symbol interference (ISI) and inter-carrier interference (ICI) in order to achieve higher data rates in comparison to the previous generations of wireless networks. Various filter bank multicarrier systems have been considered as potential waveforms for the fast emerging next generation (xG) of wireless networks (especially the fifth generation (5G) networks). Some examples of the considered waveforms are orthogonal frequency division multiplexing with offset quadrature amplitude modulation based filter bank, universal filtered multicarrier (UFMC), bi-orthogonal frequency division multiplexing (BFDM) and generalized frequency division multiplexing (GFDM). In perfect reconstruction (PR) or near perfect reconstruction (NPR) filter bank designs, these aforementioned FBMC waveforms adopt the use of well-designed prototype filters (which are used for designing the synthesis and analysis filter banks) so as to either replace or minimize the CP usage of the 4G networks in order to provide higher spectral efficiencies for the overall increment in data rates. The accurate designing of the FIR low-pass prototype filter in NPR filter banks results in minimal signal distortions thus, making the analysis filter bank a time-reversed version of the corresponding synthesis filter bank. However, in non-perfect reconstruction (Non-PR) the analysis filter bank is not directly a time-reversed version of the corresponding synthesis filter bank as the prototype filter impulse response for this system is formulated (in this dissertation) by the introduction of randomly generated errors. Hence, aliasing and amplitude distortions are more prominent for Non-PR. Channel estimation (CE) is used to predict the behaviour of the frequency selective channel and is usually adopted to ensure excellent reconstruction of the transmitted symbols. These techniques can be broadly classified as pilot based, semi-blind and blind channel estimation schemes. In this dissertation, two linear pilot based CE techniques namely the least square (LS) and linear minimum mean square error (LMMSE), and three adaptive channel estimation schemes namely least mean square (LMS), normalized least mean square (NLMS) and recursive least square (RLS) are presented, analyzed and documented. These are implemented while exploiting the near orthogonality properties of offset quadrature amplitude modulation (OQAM) to mitigate the effects of interference for two filter bank waveforms (i.e. OFDM/OQAM and GFDM/OQAM) for the next generation of wireless networks assuming conditions of both NPR and Non-PR in slow and fast frequency selective Rayleigh fading channel. Results obtained from the computer simulations carried out showed that the channel estimation schemes performed better in an NPR filter bank system as compared with Non-PR filter banks. The low performance of Non-PR system is due to the amplitude distortion and aliasing introduced from the random errors generated in the system that is used to design its prototype filters. It can be concluded that RLS, NLMS, LMS, LMMSE and LS channel estimation schemes offered the best normalized mean square error (NMSE) and bit error rate (BER) performances (in decreasing order) for both waveforms assuming both NPR and Non-PR filter banks. Keywords: Channel estimation, Filter bank, OFDM/OQAM, GFDM/OQAM, NPR, Non-PR, 5G, Frequency selective channel.CK201

    Adaptive bootstrap signal separators for BPSK/QAM-modulated wireless CDMA systems in a multipath environment

    Get PDF
    CDMA is an attractive multiple-access scheme, because of its potential capacity increase and its anti-multipath fading capability. For satisfactory performance, however, the effect of the near-far problem has to be resolved. This problem can be combated by using power-control, which, however, results in an overall reduction in communication ranges, and thus in a loss of capacity. Among other methods for mitigating the near-far problem is the use of decorrelating receivers, both of fixed type, which directly utilizes the cross-correlation of the users codes, and of adaptive type, which uses recursive algorithms that leads to signal decorrelation. Not to lessen the importance of other adaptive algorithms, the current research concentrates on what was termed in the literature bootstrap algorithm . Although the emphasis will be on applying the adaptive bootstrap decorrelator, the fixed type will be used primarily to provide comparison. Also used for comparison are both blind adaptive and training sequence based MMSE. Most of the literature on multiuser detection has been assuming BPSK. However, a need for transferring wideband data demands using modulation schemes with high bits/cycle, such as QAM. Therefore, modification of the receiver is considered, so that QAM-modulation can be applied efficiently, using the complex signal approach of this modulation. For the asynchronous channel, vast amounts of research have been devoted to using one-shot matched filter banks followed by conventional decorrelators which implement the inverse of some (partial) correlation matrix. In this work, an adaptive bootstrap version is presented, which is suitable for the one-shot structure shown previously to be more robust to errors in delay estimation. It has also been noted that such a correlation matrix can, depending on the channel characteristics, become ill-conditioned or even singular. Therefore, another matched filtering structure, followed by what is called a multishot conventional (fixed type) decorrelator, has been previously suggested to mitigate this singularity problem. However, the fixed type of the multishot decorrelator is expected to have similar non-robustness to errors in delay estimation as was previously shown for the one-shot. Therefore, the adaptive multishot bootstrap decorrelator is presented and evaluated. Also, by adding an adaptive canceler, an extension to the above matched filter-decorrelator combination, will be proposed and evaluated. A multipath time-variant fading environment will be used in some of these performance evaluations. Finally, when handling multipath channels, the question is raised whether path combining should be done before or after the signals are decorrelated. For the asynchronous case, a one-shot extension of the bootstrap algorithm is presented, which is capable of decorrelating the signals from resolved paths of different users, to facilitate the decorrelate before combining case

    Efficient low-power design and implementation of IQ-imbalance compensator using early termination

    Get PDF
    In this paper, we propose a low-complexity architecture for the implementation of adaptive IQ-imbalance compensation in quadrature zero-IF receivers. Our blind IQ-compensation scheme jointly compensates for IQ phase and gain errors without the need for test/pilot tones. The proposed architecture employs early-termination of the iteration process; this enables the powering-down of the parts of the adaptive algorithm thereby saving power. The complexity, in terms of power-down efficiency is evaluated and shows a reduction by 37-50 % for 32-PSK and 37-58 % for 64-QAM modulated signals
    • …
    corecore