3,447 research outputs found

    Resilience and Controllability of Dynamic Collective Behaviors

    Get PDF
    The network paradigm is used to gain insight into the structural root causes of the resilience of consensus in dynamic collective behaviors, and to analyze the controllability of the swarm dynamics. Here we devise the dynamic signaling network which is the information transfer channel underpinning the swarm dynamics of the directed interagent connectivity based on a topological neighborhood of interactions. The study of the connectedness of the swarm signaling network reveals the profound relationship between group size and number of interacting neighbors, which is found to be in good agreement with field observations on flock of starlings [Ballerini et al. (2008) Proc. Natl. Acad. Sci. USA, 105: 1232]. Using a dynamical model, we generate dynamic collective behaviors enabling us to uncover that the swarm signaling network is a homogeneous clustered small-world network, thus facilitating emergent outcomes if connectedness is maintained. Resilience of the emergent consensus is tested by introducing exogenous environmental noise, which ultimately stresses how deeply intertwined are the swarm dynamics in the physical and network spaces. The availability of the signaling network allows us to analytically establish for the first time the number of driver agents necessary to fully control the swarm dynamics

    Optimal construction of k-nearest neighbor graphs for identifying noisy clusters

    Get PDF
    We study clustering algorithms based on neighborhood graphs on a random sample of data points. The question we ask is how such a graph should be constructed in order to obtain optimal clustering results. Which type of neighborhood graph should one choose, mutual k-nearest neighbor or symmetric k-nearest neighbor? What is the optimal parameter k? In our setting, clusters are defined as connected components of the t-level set of the underlying probability distribution. Clusters are said to be identified in the neighborhood graph if connected components in the graph correspond to the true underlying clusters. Using techniques from random geometric graph theory, we prove bounds on the probability that clusters are identified successfully, both in a noise-free and in a noisy setting. Those bounds lead to several conclusions. First, k has to be chosen surprisingly high (rather of the order n than of the order log n) to maximize the probability of cluster identification. Secondly, the major difference between the mutual and the symmetric k-nearest neighbor graph occurs when one attempts to detect the most significant cluster only.Comment: 31 pages, 2 figure

    Continuum percolation of polydisperse hyperspheres in infinite dimensions

    Full text link
    We analyze the critical connectivity of systems of penetrable dd-dimensional spheres having size distributions in terms of weighed random geometrical graphs, in which vertex coordinates correspond to random positions of the sphere centers and edges are formed between any two overlapping spheres. Edge weights naturally arise from the different radii of two overlapping spheres. For the case in which the spheres have bounded size distributions, we show that clusters of connected spheres are tree-like for d→∞d\rightarrow \infty and they contain no closed loops. In this case, we find that the mean cluster size diverges at the percolation threshold density ηc→2−d\eta_c\rightarrow 2^{-d}, independently of the particular size distribution. We also show that the mean number of overlaps for a particle at criticality zcz_c is smaller than unity, while zc→1z_c\rightarrow 1 only for spheres with fixed radii. We explain these features by showing that in the large dimensionality limit the critical connectivity is dominated by the spheres with the largest size. Assuming that closed loops can be neglected also for unbounded radii distributions, we find that the asymptotic critical threshold for systems of spheres with radii following a lognormal distribution is no longer universal, and that it can be smaller than 2−d2^{-d} for d→∞d\rightarrow\infty.Comment: 11 pages, 5 figure

    Connectivity in Dense Networks Confined within Right Prisms

    Full text link
    We consider the probability that a dense wireless network confined within a given convex geometry is fully connected. We exploit a recently reported theory to develop a systematic methodology for analytically characterizing the connectivity probability when the network resides within a convex right prism, a polyhedron that accurately models many geometries that can be found in practice. To maximize practicality and applicability, we adopt a general point-to-point link model based on outage probability, and present example analytical and numerical results for a network employing 2×22 \times 2 multiple-input multiple-output (MIMO) maximum ratio combining (MRC) link level transmission confined within particular bounding geometries. Furthermore, we provide suggestions for extending the approach detailed herein to more general convex geometries.Comment: 8 pages, 6 figures. arXiv admin note: text overlap with arXiv:1201.401

    Numerical study for the c-dependence of fractal dimension in two-dimensional quantum gravity

    Get PDF
    We numerically investigate the fractal structure of two-dimensional quantum gravity coupled to matter central charge c for −2≤c≤1-2 \leq c \leq 1. We reformulate Q-state Potts model into the model which can be identified as a weighted percolation cluster model and can make continuous change of Q, which relates c, on the dynamically triangulated lattice. The c-dependence of the critical coupling is measured from the percolation probability and susceptibility. The c-dependence of the string susceptibility of the quantum surface is evaluated and has very good agreement with the theoretical predictions. The c-dependence of the fractal dimension based on the finite size scaling hypothesis is measured and has excellent agreement with one of the theoretical predictions previously proposed except for the region near c≈1c\approx 1.Comment: 41 pages, 16 figure

    Continuum percolation for Cox point processes

    Get PDF
    We investigate continuum percolation for Cox point processes, that is, Poisson point processes driven by random intensity measures. First, we derive sufficient conditions for the existence of non-trivial sub- and super-critical percolation regimes based on the notion of stabilization. Second, we give asymptotic expressions for the percolation probability in large-radius, high-density and coupled regimes. In some regimes, we find universality, whereas in others, a sensitive dependence on the underlying random intensity measure survives.Comment: 21 pages, 5 figure

    Extremal Properties of Three Dimensional Sensor Networks with Applications

    Full text link
    In this paper, we analyze various critical transmitting/sensing ranges for connectivity and coverage in three-dimensional sensor networks. As in other large-scale complex systems, many global parameters of sensor networks undergo phase transitions: For a given property of the network, there is a critical threshold, corresponding to the minimum amount of the communication effort or power expenditure by individual nodes, above (resp. below) which the property exists with high (resp. a low) probability. For sensor networks, properties of interest include simple and multiple degrees of connectivity/coverage. First, we investigate the network topology according to the region of deployment, the number of deployed sensors and their transmitting/sensing ranges. More specifically, we consider the following problems: Assume that nn nodes, each capable of sensing events within a radius of rr, are randomly and uniformly distributed in a 3-dimensional region R\mathcal{R} of volume VV, how large must the sensing range be to ensure a given degree of coverage of the region to monitor? For a given transmission range, what is the minimum (resp. maximum) degree of the network? What is then the typical hop-diameter of the underlying network? Next, we show how these results affect algorithmic aspects of the network by designing specific distributed protocols for sensor networks
    • …
    corecore