31 research outputs found

    A Multi-view Context-aware Approach to Android Malware Detection and Malicious Code Localization

    Full text link
    Existing Android malware detection approaches use a variety of features such as security sensitive APIs, system calls, control-flow structures and information flows in conjunction with Machine Learning classifiers to achieve accurate detection. Each of these feature sets provides a unique semantic perspective (or view) of apps' behaviours with inherent strengths and limitations. Meaning, some views are more amenable to detect certain attacks but may not be suitable to characterise several other attacks. Most of the existing malware detection approaches use only one (or a selected few) of the aforementioned feature sets which prevent them from detecting a vast majority of attacks. Addressing this limitation, we propose MKLDroid, a unified framework that systematically integrates multiple views of apps for performing comprehensive malware detection and malicious code localisation. The rationale is that, while a malware app can disguise itself in some views, disguising in every view while maintaining malicious intent will be much harder. MKLDroid uses a graph kernel to capture structural and contextual information from apps' dependency graphs and identify malice code patterns in each view. Subsequently, it employs Multiple Kernel Learning (MKL) to find a weighted combination of the views which yields the best detection accuracy. Besides multi-view learning, MKLDroid's unique and salient trait is its ability to locate fine-grained malice code portions in dependency graphs (e.g., methods/classes). Through our large-scale experiments on several datasets (incl. wild apps), we demonstrate that MKLDroid outperforms three state-of-the-art techniques consistently, in terms of accuracy while maintaining comparable efficiency. In our malicious code localisation experiments on a dataset of repackaged malware, MKLDroid was able to identify all the malice classes with 94% average recall

    Understanding Android App Piggybacking:A Systematic Study of Malicious Code Grafting

    Get PDF
    The Android packaging model offers ample opportunities for malware writers to piggyback malicious code in popular apps, which can then be easily spread to a large user base. Although recent research has produced approaches and tools to identify piggybacked apps, the literature lacks a comprehensive investigation into such phenomenon. We fill this gap by 1) systematically building a large set of piggybacked and benign apps pairs, which we release to the community, 2) empirically studying the characteristics of malicious piggybacked apps in comparison with their benign counterparts, and 3) providing insights on piggybacking processes. Among several findings providing insights, analysis techniques should build upon to improve the overall detection and classification accuracy of piggybacked apps, we show that piggybacking operations not only concern app code but also extensively manipulates app resource files, largely contradicting common beliefs. We also find that piggybacking is done with little sophistication, in many cases automatically, and often via library code

    Detecting Repackaged Android Applications Using Perceptual Hashing

    Get PDF
    The last decade has shown a steady rate of Android device dominance in market share and the emergence of hundreds of thousands of apps available to the public. Because of the ease of reverse engineering Android applications, repackaged malicious apps that clone existing code have become a severe problem in the marketplace. This research proposes a novel repackaged detection system based on perceptual hashes of vetted Android apps and their associated dynamic user interface (UI) behavior. Results show that an average hash approach produces 88% accuracy (indicating low false negative and false positive rates) in a sample set of 4878 Android apps, including 2151 repackaged apps. The approach is the first dynamic method proposed in the research community using image-based hashing techniques with reasonable performance to other known dynamic approaches and the possibility for practical implementation at scale for new applications entering the Android market

    An Efficient Multistage Fusion Approach for Smartphone Security Analysis

    Get PDF
    Android smartphone ecosystem is inundated with innumerable applications mainly developed by third party contenders leading to high vulnerability of these devices. In addition, proliferation of smartphone usage along with their potential applications in diverse field entice malware community to develop new malwares to attack these devices. In order to overcome these issues, an android malware detection framework is proposed wherein an efficient multistage fusion approach is introduced. For this, a robust unified feature vector is created by fusion of transformed feature matrices corresponding to multi-cue using non-linear graph based cross-diffusion. Unified feature is further subjected to multiple classifiers to obtain their classification scores. Classifier scores are further optimally fused employing Dezert-Smarandache Theory (DSmT). Strength of suggested model is assessed both qualitatively and quantitatively by ten-fold cross-validation on the benchmarked datasets. On an average of outcome, we achieved detection accuracy of 98.97% and F-measure of 0.9936.&nbsp

    Understanding Android App Piggybacking

    Get PDF
    The Android packaging model offers adequate opportunities for attackers to inject malicious code into popular benign apps, attempting to develop new malicious apps that can then be easily spread to a large user base. Despite the fact that the literature has already presented a number of tools to detect piggybacked apps, there is still lacking a comprehensive investigation on the piggybacking processes. To fill this gap, in this work, we collect a large set of benign/piggybacked app pairs that can be taken as benchmark apps for further investigation. We manually look into these benchmark pairs for understanding the characteristics of piggybacking apps and eventually we report 20 interesting findings. We expect these findings to initiate new research directions such as practical and scalable piggybacked app detection, explainable malware detection, and malicious code location

    The Multi-Generation Repackaging Hypothesis

    Get PDF
    App repackaging is a common threat in the Android ecosystem. To face this threat, the literature now includes a large body of work proposing approaches for identifying repackaged apps. Unfortunately, although most research involves pairwise similarity comparison to distinguish repackaged apps from their “original” counterparts, no work has considered the threat to validity of not being able to discover the true original apps. We provide in this paper preliminary insights of an investigation into the Multi-Generation Repackaging Hypothesis: is the original in a repackaging process the outcome of a previous repackaging process? Leveraging the Androzoo dataset of over 5 million Android apps, we validate this hypothesis in the wild, calling upon the community to take this threat into account in new solutions for repackaged app detection
    corecore