113,683 research outputs found

    Opinion dynamics: models, extensions and external effects

    Full text link
    Recently, social phenomena have received a lot of attention not only from social scientists, but also from physicists, mathematicians and computer scientists, in the emerging interdisciplinary field of complex system science. Opinion dynamics is one of the processes studied, since opinions are the drivers of human behaviour, and play a crucial role in many global challenges that our complex world and societies are facing: global financial crises, global pandemics, growth of cities, urbanisation and migration patterns, and last but not least important, climate change and environmental sustainability and protection. Opinion formation is a complex process affected by the interplay of different elements, including the individual predisposition, the influence of positive and negative peer interaction (social networks playing a crucial role in this respect), the information each individual is exposed to, and many others. Several models inspired from those in use in physics have been developed to encompass many of these elements, and to allow for the identification of the mechanisms involved in the opinion formation process and the understanding of their role, with the practical aim of simulating opinion formation and spreading under various conditions. These modelling schemes range from binary simple models such as the voter model, to multi-dimensional continuous approaches. Here, we provide a review of recent methods, focusing on models employing both peer interaction and external information, and emphasising the role that less studied mechanisms, such as disagreement, has in driving the opinion dynamics. [...]Comment: 42 pages, 6 figure

    Consensus problems in networks of agents with switching topology and time-delays

    Get PDF
    In this paper, we discuss consensus problems for networks of dynamic agents with fixed and switching topologies. We analyze three cases: 1) directed networks with fixed topology; 2) directed networks with switching topology; and 3) undirected networks with communication time-delays and fixed topology. We introduce two consensus protocols for networks with and without time-delays and provide a convergence analysis in all three cases. We establish a direct connection between the algebraic connectivity (or Fiedler eigenvalue) of the network and the performance (or negotiation speed) of a linear consensus protocol. This required the generalization of the notion of algebraic connectivity of undirected graphs to digraphs. It turns out that balanced digraphs play a key role in addressing average-consensus problems. We introduce disagreement functions for convergence analysis of consensus protocols. A disagreement function is a Lyapunov function for the disagreement network dynamics. We proposed a simple disagreement function that is a common Lyapunov function for the disagreement dynamics of a directed network with switching topology. A distinctive feature of this work is to address consensus problems for networks with directed information flow. We provide analytical tools that rely on algebraic graph theory, matrix theory, and control theory. Simulations are provided that demonstrate the effectiveness of our theoretical results

    Consensus formation on coevolving networks: groups' formation and structure

    Full text link
    We study the effect of adaptivity on a social model of opinion dynamics and consensus formation. We analyze how the adaptivity of the network of contacts between agents to the underlying social dynamics affects the size and topological properties of groups and the convergence time to the stable final state. We find that, while on static networks these properties are determined by percolation phenomena, on adaptive networks the rewiring process leads to different behaviors: Adaptive rewiring fosters group formation by enhancing communication between agents of similar opinion, though it also makes possible the division of clusters. We show how the convergence time is determined by the characteristic time of link rearrangement. We finally investigate how the adaptivity yields nontrivial correlations between the internal topology and the size of the groups of agreeing agents.Comment: 10 pages, 3 figures,to appear in a special proceedings issue of J. Phys. A covering the "Complex Networks: from Biology to Information Technology" conference (Pula, Italy, 2007

    Bounded Confidence under Preferential Flip: A Coupled Dynamics of Structural Balance and Opinions

    Full text link
    In this work we study the coupled dynamics of social balance and opinion formation. We propose a model where agents form opinions under bounded confidence, but only considering the opinions of their friends. The signs of social ties -friendships and enmities- evolve seeking for social balance, taking into account how similar agents' opinions are. We consider both the case where opinions have one and two dimensions. We find that our dynamics produces the segregation of agents into two cliques, with the opinions of agents in one clique differing from those in the other. Depending on the level of bounded confidence, the dynamics can produce either consensus of opinions within each clique or the coexistence of several opinion clusters in a clique. For the uni-dimensional case, the opinions in one clique are all below the opinions in the other clique, hence defining a "left clique" and a "right clique". In the two-dimensional case, our numerical results suggest that the two cliques are separated by a hyperplane in the opinion space. We also show that the phenomenon of unidimensional opinions identified by DeMarzo, Vayanos and Zwiebel (Q J Econ 2003) extends partially to our dynamics. Finally, in the context of politics, we comment about the possible relation of our results to the fragmentation of an ideology and the emergence of new political parties.Comment: 8 figures, PLoS ONE 11(10): e0164323, 201

    Time scale modeling for consensus in sparse directed networks with time-varying topologies

    Get PDF
    The paper considers the consensus problem in large networks represented by time-varying directed graphs. A practical way of dealing with large-scale networks is to reduce their dimension by collapsing the states of nodes belonging to densely and intensively connected clusters into aggregate variables. It will be shown that under suitable conditions, the states of the agents in each cluster converge fast toward a local agreement. Local agreements correspond to aggregate variables which slowly converge to consensus. Existing results concerning the time-scale separation in large networks focus on fixed and undirected graphs. The aim of this work is to extend these results to the more general case of time-varying directed topologies. It is noteworthy that in the fixed and undirected graph case the average of the states in each cluster is time-invariant when neglecting the interactions between clusters. Therefore, they are good candidates for the aggregate variables. This is no longer possible here. Instead, we find suitable time-varying weights to compute the aggregate variables as time-invariant weighted averages of the states in each cluster. This allows to deal with the more challenging time-varying directed graph case. We end up with a singularly perturbed system which is analyzed by using the tools of two time-scales averaging which seem appropriate to this system
    • …
    corecore