262 research outputs found

    Design of miniaturized sensors for a mission-oriented uav application: A new pathway for early warning

    Get PDF
    In recent decades, the increasing threats associated with Chemical and Radiological (CR) agents prompted the development of new tools to detect and collect samples without putting in danger first responders inside contaminated areas. A particularly promising branch of these technological developments relates to the integration of different detectors and sampling systems with Unmanned Aerial Vehicles (UAV). The adoption of this equipment may bring significant benefits for both military and civilian implementations. For instance, instrumented UAVs could be used in support of specialist military teams such as Sampling and Identification of Biological, Chemical and Radiological Agents (SIBCRA) team, tasked to perform sampling in contaminated areas, detecting the presence of CR substances in field and then confirming, collecting and evaluating the effective threats. Furthermore, instrumented UAVs may find dual-use application in the civil world in support of emergency teams during industrial accidents and in the monitoring activities of critical infrastructures. Small size drones equipped with different instruments for detection and collection of samples may enable, indeed, several applications, becoming a tool versatile and easy to use in different fields, and even featuring equipment normally utilized in manual operation. The authors hereby present the design of miniaturized sensors for a mission-oriented UAV application and the preliminary results from an experimental campaign performed in 2020

    Establishing a Split Luciferase Assay for Proteinkinase G (PKG) Interaction Studies

    Get PDF
    Nitric oxide (NO/cyclic guanosine monophosphate (cGMP)-regulated cellular mechanisms are involved in a variety of (patho-) physiological processes. One of the main effector molecules in this system, proteinkinase G (PKG), serves as a molecular switch by phosphorylating different target proteins and thereby turning them on or off. To date, only a few interaction partners of PKG have been described although the identification of protein-protein interactions (PPI) is indispensable for the understanding of cellular processes and diseases. Conventionally used methods to detect PPIs exhibit several disadvantages, e.g., co-immunoprecipitations, which depend on suitable high-affinity antibodies. Therefore, we established a cell-based protein-fragment complementation assay (PCA) for the identification of PKG target proteins. Here, a reporter protein (click beetle luciferase) is split into two fragments and fused to two different possible interaction partners. If interaction occurs, the reporter protein is functionally complemented and the catalyzed reaction can then be quantitatively measured. By using this technique, we confirmed the regulator of G-Protein signaling 2 (RGS2) as an interaction partner of PKGI alpha (a PKG-isoform) following stimulation with 8-Br-cGMP and 8-pCPT-cGMP. Hence, our results support the conclusion that the established approach could serve as a novel tool for the rapid, easy and cost-efficient detection of novel PKG target proteins

    The U.S. Military and the Evolving Challenges in the Middle East

    Get PDF
    The Naval War College has two main missions: to educate future leaders and to help define the future Navy. These are, remarkably, the basic mis- sions for which the College was established over a century ago. The times have certainly changed, the technology of maritime warfare has improved, and the geopolitical landscape would hardly be recognizable to our founder, Stephen B. Luce. But the mission has remained constant—to be a force for change and to serve as the intellectual center of the Navy

    A conceptual information sharing framework to improve supply chain security collaboration

    Get PDF
    Modern Supply Chains are critical in terms of efficiency, economic activities and commercial impact, particularly in case of security incidents. Inland terminals, commercial ports and dry ports constitute key gateways for the transportation flows in these modern supply chains and are require enhanced security procedures. This paper develops a framework that facilitates the sharing of information among various supply chain stakeholders, which is expected to improve the security level from a value chain perspective. In this context, we propose the upgrade of the current security strategies utilizing existing processes, equipment in order to minimise time and cost currently needed but more importantly improving the level of security in the supply chain. A conceptual rule and role-based data fusion framework is developed enabling the seamless and timely exchange of messages. The proposed Data Fusion Framework has a simple architecture that supports quick integration to either network-based, distributed systems or conventional stand-alone systems and adheres to common data fusion principles. The proposed framework considers different components (e.g. sensors, algorithms and fusing procedures) in an equipment agnostic approach so as to enable easy access and easy usage of security information.N/
    • …
    corecore