619 research outputs found

    Neural Basis of Functional Connectivity MRI

    Get PDF
    The brain is hierarchically organized across a range of scales. While studies based on electrophysiology and anatomy have been fruitful on the micron to millimeter scale, findings based on functional connectivity MRI (fcMRI) suggest that a higher level of brain organization has been largely overlooked. These findings show that the brain is organized into networks, and each network extends across multiple brain areas. This large-scale, across-area brain organization is functionally relevant and stable across subjects, primate species, and levels of consciousness. This dissertation addresses the neural origin of MRI functional connectivity. fcMRI relies on temporal correlation in at-rest blood oxygen level dependent (BOLD) fluctuations. Thus, understanding the neural origin of at-rest BOLD correlation is of critical significance. By shedding light on the origin of the large-scale brain organization captured by fcMRI, it will guide the design and interpretation of fcMRI studies. Prior investigations of the neural basis of BOLD have not addressed the at-rest BOLD correlation, and they have been focusing on task-related BOLD. At-rest BOLD correlation captured by fcMRI likely reflects a distinct physiological process that is different from that of task-related BOLD, since these two kinds of BOLD dynamics are different in their temporal scale, spatial spread, energy consumption, and their dependence on consciousness. To address this issue, we develop a system to simultaneously record oxygen and electrophysiology in at-rest, awake monkeys. We demonstrate that our oxygen measurement, oxygen polarography, captures the same physiological phenomenon as BOLD by showing that task-related polarographic oxygen responses and at-rest polarographic oxygen correlation are similar to those of BOLD. These results validate the use of oxygen polarography as a surrogate for BOLD to address the neural origin of MRI functional connectivity. Next, we show that at-rest oxygen correlation reflects at-rest correlation in electrophysiological signals, especially spiking activity of neurons. Using causality analysis, we show that oxygen is driven by slow changes in raw local field potential levels (slow LFP), and slow LFP itself is driven by spiking activity. These results provide critical support to the idea that oxygen correlation reflects neural activity, and pose significant challenges to the traditional view of neurohemodynamic coupling. In addition, we find that at-rest correlation does not originate from criticality, which has been the dominant hypothesis in the field. Instead, we show that at-rest correlation likely reflects a specific and potentially localized oscillatory process. We suggest that this oscillatory process could be a result of the delayed negative feedback loop between slow LFP and spiking activity. Thus, we conclude that at-rest BOLD correlation captured by fcMRI is driven by at-rest slow LFP correlation, which is itself driven by spiking activity correlation. The at-rest spiking activity correlation, itself, is likely driven by an oscillatory process. Future studies combining recording with interventional approaches, like pharmacological manipulation and microstimulation, will help to elucidate the circuitry underlying the oscillatory process and its potential functional role

    Issues in the processing and analysis of functional NIRS imaging and a contrast with fMRI findings in a study of sensorimotor deactivation and connectivity

    Get PDF
    Includes abstract.~Includes bibliographical references.The first part of this thesis examines issues in the processing and analysis of continuous wave functional linear infrared spectroscopy (fNIRS) of the brain usung the DYNOT system. In the second part, the same sensorimotor experiment is carried out using functional magnetic resonance imaging (fMRI) and near infrared spectroscopy in eleven of the same subjects, to establish whether similar results can be obtained at the group level with each modality. Various techniques for motion artefact removal in fNIRS are compared. Imaging channels with negligible distance between source and detector are used to detect subject motion, and in data sets containing deliberate motion artefacts, independent component analysis and multiple-channel regression are found to improve the signal-to-noise ratio

    Biomedical Signal Analysis of the Brain and Systemic Physiology

    Full text link
    Near-infrared spectroscopy (NIRS) is a non-invasive and easy-to-use diagnostic technique that enables real-time tissue oxygenation measurements applied in various contexts and for different purposes. Continuous monitoring with NIRS of brain oxygenation, for example, in neonatal intensive care units (NICUs), is essential to prevent lifelong disabilities in newborns. Moreover, NIRS can be applied to observe brain activity associated with hemodynamic changes in blood flow due to neurovascular coupling. In the latter case, NIRS contributes to studying cognitive processes allowing to conduct experiments in natural and socially interactive contexts of everyday life. However, it is essential to measure systemic physiology and NIRS signals concurrently. The combination of brain and body signals enables to build sophisticated systems that, for example, reduce the false alarms that occur in NICUs. Furthermore, since fNIRS signals are influenced by systemic physiology, it is essential to understand how the latter impacts brain signals in functional studies. There is an interesting brain body coupling that has rarely been investigated yet. To take full advantage of these brain and body data, the aim of this thesis was to develop novel approaches to analyze these biosignals to extract the information and identify new patterns, to solve different research or clinical questions. For this the development of new methodological approaches and sophisticated data analysis is necessary, because often the identification of these patterns is challenging or not possible with traditional methods. In such cases, automatic machine learning (ML) techniques are beneficial. The first contribution of this work was to assess the known systemic physiology augmented (f)NIRS approach for clinical use and in everyday life. Based on physiological and NIRS signals of preterm infants, an ML-based classification system has been realized, able to reduce the false alarms in NICUs by providing a high sensitivity rate. In addition, the SPA-fNIRS approach was further applied in adults during a breathing task. The second contribution of this work was the advancement of the classical fNIRS hyperscanning method by adding systemic physiology measures. For this, new biosignal analyses in the time-frequency domain have been developed and tested in a simple nonverbal synchrony task between pairs of subjects. Furthermore, based on SPA-fNIRS hyperscanning data, another ML-based system was created, which is able distinguish familiar and unfamiliar pairs with high accuracy. This approach enables to determine the strength of social bonds in a wide range of social interaction contexts. In conclusion, we were the first group to perform a SPA-fNIRS hyperscanning study capturing changes in cerebral oxygenation and hemodynamics as well as systemic physiology in two subjects simultaneously. We applied new biosignals analysis methods enabling new insights into the study of social interactions. This work opens the door to many future inter-subjects fNIRS studies with the benefit of assessing the brain-to-brain, the brain-to-body, and body-to-body coupling between pairs of subjects

    Functional imaging of the developing brain with wearable high-density diffuse optical tomography: a new benchmark for infant neuroimaging outside the scanner environment

    Get PDF
    Studies of cortical function in the awake infant are extremely challenging to undertake with traditional neuroimaging approaches. Partly in response to this challenge, functional near-infrared spectroscopy (fNIRS) has become increasingly common in developmental neuroscience, but has significant limitations including resolution, spatial specificity and ergonomics. In adults, high-density arrays of near-infrared sources and detectors have recently been shown to yield dramatic improvements in spatial resolution and specificity when compared to typical fNIRS approaches. However, most existing fNIRS devices only permit the acquisition of ∼20-100 sparsely distributed fNIRS channels, and increasing the number of optodes presents significant mechanical challenges, particularly for infant applications. A new generation of wearable, modular, high-density diffuse optical tomography (HD-DOT) technologies has recently emerged that overcomes many of the limitations of traditional, fibre-based and low-density fNIRS measurements. Driven by the development of this new technology, we have undertaken the first study of the infant brain using wearable HD-DOT. Using a well-established social stimulus paradigm, and combining this new imaging technology with advances in cap design and spatial registration, we show that it is now possible to obtain high-quality, functional images of the infant brain with minimal constraints on either the environment or on the infant participants. Our results are consistent with prior low-density fNIRS measures based on similar paradigms, but demonstrate superior spatial localization, improved depth specificity, higher SNR and a dramatic improvement in the consistency of the responses across participants. Our data retention rates also demonstrate that this new generation of wearable technology is well tolerated by the infant population

    Brain-Computer Interface

    Get PDF
    Brain-computer interfacing (BCI) with the use of advanced artificial intelligence identification is a rapidly growing new technology that allows a silently commanding brain to manipulate devices ranging from smartphones to advanced articulated robotic arms when physical control is not possible. BCI can be viewed as a collaboration between the brain and a device via the direct passage of electrical signals from neurons to an external system. The book provides a comprehensive summary of conventional and novel methods for processing brain signals. The chapters cover a range of topics including noninvasive and invasive signal acquisition, signal processing methods, deep learning approaches, and implementation of BCI in experimental problems
    • …
    corecore