27,532 research outputs found

    Hidden Markov Models for Analysis of Multimodal Biomedical Images

    Get PDF
    Modern advances in imaging technology have enabled the collection of huge amounts of multimodal imagery of complex biological systems. The extraction of information from this data and subsequent analysis are essential in understanding the architecture and dynamics of these systems. Due to the sheer volume of the data, manual annotation and analysis is usually infeasible, and robust automated techniques are the need of the hour. In this dissertation, we present three hidden Markov model (HMM)-based methods for automated analysis of multimodal biomedical images. First, we outline a novel approach to simultaneously classify and segment multiple cells of different classes in multi-biomarker images. A 2D HMM is set up on the superpixel lattice obtained from the input image. Parameters ensuring spatial consistency of labels and high confidence in local class selection are embedded in the HMM framework, and learnt with the objective of maximizing discrimination between classes. Optimal labels are inferred using the HMM, and are aggregated to obtain global multiple object segmentation. We then address the problem of automated spatial alignment of images from different modalities. We propose a probabilistic framework, constructed using a 2D HMM, for deformable registration of multimodal images. The HMM is tailored to capture deformation via state transitions, and modality-specific representation via class-conditional emission probabilities. The latter aspect is premised on the realization that different modalities may provide very different representation for a given class of objects. Parameters of the HMM are learned from data, and hence the method is applicable to a wide array of datasets. In the final part of the dissertation, we describe a method for automated segmentation and subsequent tracking of cells in a challenging target image modality, wherein useful information from a complementary (source) modality is effectively utilized to assist segmentation. Labels are estimated in the source domain, and then transferred to generate preliminary segmentations in the target domain. A 1D HMM-based algorithm is used to refine segmentation boundaries in the target image, and subsequently track cells through a 3D image stack. This dissertation details techniques for classification, segmentation and registration, that together form a comprehensive system for automated analysis of multimodal biomedical datasets

    Combining crowd worker, algorithm, and expert efforts to find boundaries of objects in images

    Get PDF
    While traditional approaches to image analysis have typically relied upon either manual annotation by experts or purely-algorithmic approaches, the rise of crowdsourcing now provides a new source of human labor to create training data or perform computations at run-time. Given this richer design space, how should we utilize algorithms, crowds, and experts to better annotate images? To answer this question for the important task of finding the boundaries of objects or regions in images, I focus on image segmentation, an important precursor to solving a variety of fundamental image analysis problems, including recognition, classification, tracking, registration, retrieval, and 3D visualization. The first part of the work includes a detailed analysis of the relative strengths and weaknesses of three different approaches to demarcate object boundaries in images: by experts, by crowdsourced laymen, and by automated computer vision algorithms. The second part of the work describes three hybrid system designs that integrate computer vision algorithms and crowdsourced laymen to demarcate boundaries in images. Experiments revealed that hybrid system designs yielded more accurate results than relying on algorithms or crowd workers alone and could yield segmentations that are indistinguishable from those created by biomedical experts. To encourage community-wide effort to continue working on developing methods and systems for image-based studies which can have real and measurable impact that benefit society at large, datasets and code are publicly-shared (http://www.cs.bu.edu/~betke/BiomedicalImageSegmentation/)

    Combining crowd worker, algorithm, and expert efforts to find boundaries of objects in images

    Get PDF
    While traditional approaches to image analysis have typically relied upon either manual annotation by experts or purely-algorithmic approaches, the rise of crowdsourcing now provides a new source of human labor to create training data or perform computations at run-time. Given this richer design space, how should we utilize algorithms, crowds, and experts to better annotate images? To answer this question for the important task of finding the boundaries of objects or regions in images, I focus on image segmentation, an important precursor to solving a variety of fundamental image analysis problems, including recognition, classification, tracking, registration, retrieval, and 3D visualization. The first part of the work includes a detailed analysis of the relative strengths and weaknesses of three different approaches to demarcate object boundaries in images: by experts, by crowdsourced laymen, and by automated computer vision algorithms. The second part of the work describes three hybrid system designs that integrate computer vision algorithms and crowdsourced laymen to demarcate boundaries in images. Experiments revealed that hybrid system designs yielded more accurate results than relying on algorithms or crowd workers alone and could yield segmentations that are indistinguishable from those created by biomedical experts. To encourage community-wide effort to continue working on developing methods and systems for image-based studies which can have real and measurable impact that benefit society at large, datasets and code are publicly-shared (http://www.cs.bu.edu/~betke/BiomedicalImageSegmentation/)

    Histopathological image analysis : a review

    Get PDF
    Over the past decade, dramatic increases in computational power and improvement in image analysis algorithms have allowed the development of powerful computer-assisted analytical approaches to radiological data. With the recent advent of whole slide digital scanners, tissue histopathology slides can now be digitized and stored in digital image form. Consequently, digitized tissue histopathology has now become amenable to the application of computerized image analysis and machine learning techniques. Analogous to the role of computer-assisted diagnosis (CAD) algorithms in medical imaging to complement the opinion of a radiologist, CAD algorithms have begun to be developed for disease detection, diagnosis, and prognosis prediction to complement the opinion of the pathologist. In this paper, we review the recent state of the art CAD technology for digitized histopathology. This paper also briefly describes the development and application of novel image analysis technology for a few specific histopathology related problems being pursued in the United States and Europe

    A Survey on Deep Learning in Medical Image Analysis

    Full text link
    Deep learning algorithms, in particular convolutional networks, have rapidly become a methodology of choice for analyzing medical images. This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year. We survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks and provide concise overviews of studies per application area. Open challenges and directions for future research are discussed.Comment: Revised survey includes expanded discussion section and reworked introductory section on common deep architectures. Added missed papers from before Feb 1st 201

    Towards automated visual flexible endoscope navigation

    Get PDF
    Background:\ud The design of flexible endoscopes has not changed significantly in the past 50 years. A trend is observed towards a wider application of flexible endoscopes with an increasing role in complex intraluminal therapeutic procedures. The nonintuitive and nonergonomical steering mechanism now forms a barrier in the extension of flexible endoscope applications. Automating the navigation of endoscopes could be a solution for this problem. This paper summarizes the current state of the art in image-based navigation algorithms. The objectives are to find the most promising navigation system(s) to date and to indicate fields for further research.\ud Methods:\ud A systematic literature search was performed using three general search terms in two medical–technological literature databases. Papers were included according to the inclusion criteria. A total of 135 papers were analyzed. Ultimately, 26 were included.\ud Results:\ud Navigation often is based on visual information, which means steering the endoscope using the images that the endoscope produces. Two main techniques are described: lumen centralization and visual odometry. Although the research results are promising, no successful, commercially available automated flexible endoscopy system exists to date.\ud Conclusions:\ud Automated systems that employ conventional flexible endoscopes show the most promising prospects in terms of cost and applicability. To produce such a system, the research focus should lie on finding low-cost mechatronics and technologically robust steering algorithms. Additional functionality and increased efficiency can be obtained through software development. The first priority is to find real-time, robust steering algorithms. These algorithms need to handle bubbles, motion blur, and other image artifacts without disrupting the steering process
    • …
    corecore