9 research outputs found

    Congestion control, energy efficiency and virtual machine placement for data centers

    Get PDF
    Data centers, facilities with communications network equipment and servers for data processing and/or storage, are prevalent and essential to provide a myriad of services and applications for various private, non-profit, and government systems, and they also form the foundation of cloud computing, which is transforming the technological landscape of the Internet. With rapid deployment of modern high-speed low-latency large-scale data centers, many issues have emerged in data centers, such as data center architecture design, congestion control, energy efficiency, virtual machine placement, and load balancing. The objective of this thesis is multi-fold. First, an enhanced Quantized Congestion Notification (QCN) congestion notification algorithm, called fair QCN (FQCN), is proposed to improve rate allocation fairness of multiple flows sharing one bottleneck link in data center networks. Detailed analysis on FQCN and simulation results is provided to validate the fair share rate allocation while maintaining the queue length stability. Furthermore, the effects of congestion notification algorithms, including QCN, AF-QCN and FQCN, are investigated with respect to TCP throughput collapse. The results show that FQCN can significantly enhance TCP throughput performance, and achieve better TCP throughput than QCN and AF-QCN in a TCP Incast setting. Second, a unified congestion detection, notification and control system for data center networks is designed to efficiently resolve network congestion in a uniform solution and to ensure convergence to statistical fairness with “no state” switches simultaneously. The architecture of the proposed system is described in detail and the FQCN algorithm is implemented in the proposed framework. The simulation results of the FQCN algorithm implemented in the proposed framework validate the robustness and efficiency of the proposed congestion control system. Third, a two-level power optimization model, namely, Hierarchical EneRgy Optimization (HERO), is established to reduce the power consumption of data center networks by switching off network switches and links while still guaranteeing full connectivity and maximizing link utilization. The power-saving performance of the proposed HERO model is evaluated by simulations with different traffic patterns. The simulation results have shown that HERO can reduce the power consumption of data center networks effectively with reduced complexity. Last, several heterogeneity aware dominant resource assistant heuristic algorithms, namely, dominant residual resource aware first-fit decreasing (DRR-FFD), individual DRR-FFD (iDRR-FFD) and dominant residual resource based bin fill (DRR-BinFill), are proposed for virtual machine (VM) consolidation. The proposed heuristic algorithms exploit the heterogeneity of the VMs’ requirements for different resources by capturing the differences among VMs’ demands, and the heterogeneity of the physical machines’ resource capacities by capturing the differences among physical machines’ resources. The performance of the proposed heuristic algorithms is evaluated with different classes of synthetic workloads under different VM requirement heterogeneity conditions, and the simulation results demonstrate that the proposed heuristics achieve quite similar consolidation performance as dimension-aware heuristics with almost the same computational cost as those of the single dimensional heuristics

    Performance of Quantized Congestion Notification in TCP Incast in Data Centers

    Get PDF
    This thesis analyzes the performance of Quantized Congestion Notification (QCN) during data access from clustered servers in data centers. The reasons why QCN does not perform adequately in these situations are examined and several modifications are proposed to the protocol to improve its performance in these scenarios. The causes of QCN performance degradation are traced to flow rate variability, and it is shown that adaptive sampling at the switch and adaptive self-increase of flow rates at the QCN rate limiter significantly enhance QCN performance in a TCP Incast setup. The performance of QCN is compared against TCP modifications in a heterogeneous environment, and it is shown that modifications to QCN yield better performance. Finally, the performance of QCN with the proposed modifications is compared with that of unmodified QCN in other workloads to show that the modifications do not negatively affect QCN performance in general

    Power-Aware Datacenter Networking and Optimization

    Get PDF
    Present-day datacenter networks (DCNs) are designed to achieve full bisection bandwidth in order to provide high network throughput and server agility. However, the average utilization of typical DCN infrastructure is below 10% for significant time intervals. As a result, energy is wasted during these periods. In this thesis we analyze traffic behavior of datacenter networks using traces as well as simulated models. Based on the insight developed, we present techniques to reduce energy waste by making energy use scale linearly with load. The solutions developed are analyzed via simulations, formal analysis, and prototyping. The impact of our work is significant because the energy savings we obtain for networking infrastructure of DCNs are near optimal. A key finding of our traffic analysis is that network switch ports within the DCN are grossly under-utilized. Therefore, the first solution we study is to modify the routing within the network to force most traffic to the smallest of switches. This increases the hop count for the traffic but enables the powering off of many switch ports. The exact extent of energy savings is derived and validated using simulations. An alternative strategy we explore in this context is to replace about half the switches with fewer switches that have higher port density. This has the effect of enabling even greater traffic consolidation, thus enabling even more ports to sleep. Finally, we explore a third approach in which we begin with end-to-end traffic models and incrementally build a DCN topology that is optimized for that model. In other words, the network topology is optimized for the potential use of the datacenter. This approach makes sense because, as other researchers have observed, the traffic in a datacenter is heavily dependent on the primary use of the datacenter. A second line of research we undertake is to merge traffic in the analog domain prior to feeding it to switches. This is accomplished by use of a passive device we call a merge network. Using a merge network enables us to attain linear scaling of energy use with load regardless of datacenter traffic models. The challenge in using such a device is that layer 2 and layer 3 protocols require a one-to-one mapping of hardware addresses to IP (Internet Protocol) addresses. We overcome this problem by building a software shim layer that hides the fact that traffic is being merged. In order to validate the idea of a merge network, we build a simple mere network for gigabit optical interfaces and demonstrate correct operation at line speeds of layer 2 and layer 3 protocols. We also conducted measurements to study how traffic gets mixed in the merge network prior to being fed to the switch. We also show that the merge network uses only a fraction of a watt of power, which makes this a very attractive solution for energy efficiency. In this research we have developed solutions that enable linear scaling of energy with load in datacenter networks. The different techniques developed have been analyzed via modeling and simulations as well as prototyping. We believe that these solutions can be easily incorporated into future DCNs with little effort

    Multistage Packet-Switching Fabrics for Data Center Networks

    Get PDF
    Recent applications have imposed stringent requirements within the Data Center Network (DCN) switches in terms of scalability, throughput and latency. In this thesis, the architectural design of the packet-switches is tackled in different ways to enable the expansion in both the number of connected endpoints and traffic volume. A cost-effective Clos-network switch with partially buffered units is proposed and two packet scheduling algorithms are described. The first algorithm adopts many simple and distributed arbiters, while the second approach relies on a central arbiter to guarantee an ordered packet delivery. For an improved scalability, the Clos switch is build using a Network-on-Chip (NoC) fabric instead of the common crossbar units. The Clos-UDN architecture made with Input-Queued (IQ) Uni-Directional NoC modules (UDNs) simplifies the input line cards and obviates the need for the costly Virtual Output Queues (VOQs). It also avoids the need for complex, and synchronized scheduling processes, and offers speedup, load balancing, and good path diversity. Under skewed traffic, a reliable micro load-balancing contributes to boosting the overall network performance. Taking advantage of the NoC paradigm, a wrapped-around multistage switch with fully interconnected Central Modules (CMs) is proposed. The architecture operates with a congestion-aware routing algorithm that proactively distributes the traffic load across the switching modules, and enhances the switch performance under critical packet arrivals. The implementation of small on-chip buffers has been made perfectly feasible using the current technology. This motivated the implementation of a large switching architecture with an Output-Queued (OQ) NoC fabric. The design merges assets of the output queuing, and NoCs to provide high throughput, and smooth latency variations. An approximate analytical model of the switch performance is also proposed. To further exploit the potential of the NoC fabrics and their modularity features, a high capacity Clos switch with Multi-Directional NoC (MDN) modules is presented. The Clos-MDN switching architecture exhibits a more compact layout than the Clos-UDN switch. It scales better and faster in port count and traffic load. Results achieved in this thesis demonstrate the high performance, expandability and programmability features of the proposed packet-switches which makes them promising candidates for the next-generation data center networking infrastructure

    Nouveaux paradigmes de contrôle de congestion dans un réseau d'opérateur

    Get PDF
    La congestion dans les réseaux est un phénomène qui peut influer sur la qualité de service ressentie par les utilisateurs. L’augmentation continue du trafic sur l’internet rend le phénomène de congestion un problème auquel l’opérateur doit répondre pour satisfaire ses clients. Les solutions historiques à la congestion pour un opérateur, comme le surdimensionnement des liens de son infrastructure, ne sont plus aujourd’hui viables. Avec l’évolution de l’architecture des réseaux et l’arrivée de nouvelles applications sur l’internet, de nouveaux paradigmes de contrôle de congestion sont à envisager pour répondre aux attentes des utilisateurs du réseau de l’opérateur. Dans cette thèse, nous examinons les nouvelles approches proposées pour le contrôle de congestion dans le réseau d’un opérateur. Nous proposons une évaluation de ces approches à travers des simulations, ce qui nous permet d’estimer leur efficacité et leur potentiel à être déployés et opérationnels dans le contexte d’internet, ainsi que de se rendre compte des défis qu’il faut relever pour atteindre cet objectif. Nous proposons également des solutions de contrôle de congestion dans des environnements nouveaux tels que les architectures Software Defined Networking et le cloud déployé sur un ou plusieurs data centers, où la congestion est à surveiller pour maintenir la qualité des services cloud offerts aux clients. Pour appuyer nos propositions d’architectures de contrôle de congestion, nous présentons des plateformes expérimentales qui démontrent le fonctionnement et le potentiel de nos solutions

    Multistage Packet-Switching Fabrics for Data Center Networks

    Get PDF
    Recent applications have imposed stringent requirements within the Data Center Network (DCN) switches in terms of scalability, throughput and latency. In this thesis, the architectural design of the packet-switches is tackled in different ways to enable the expansion in both the number of connected endpoints and traffic volume. A cost-effective Clos-network switch with partially buffered units is proposed and two packet scheduling algorithms are described. The first algorithm adopts many simple and distributed arbiters, while the second approach relies on a central arbiter to guarantee an ordered packet delivery. For an improved scalability, the Clos switch is build using a Network-on-Chip (NoC) fabric instead of the common crossbar units. The Clos-UDN architecture made with Input-Queued (IQ) Uni-Directional NoC modules (UDNs) simplifies the input line cards and obviates the need for the costly Virtual Output Queues (VOQs). It also avoids the need for complex, and synchronized scheduling processes, and offers speedup, load balancing, and good path diversity. Under skewed traffic, a reliable micro load-balancing contributes to boosting the overall network performance. Taking advantage of the NoC paradigm, a wrapped-around multistage switch with fully interconnected Central Modules (CMs) is proposed. The architecture operates with a congestion-aware routing algorithm that proactively distributes the traffic load across the switching modules, and enhances the switch performance under critical packet arrivals. The implementation of small on-chip buffers has been made perfectly feasible using the current technology. This motivated the implementation of a large switching architecture with an Output-Queued (OQ) NoC fabric. The design merges assets of the output queuing, and NoCs to provide high throughput, and smooth latency variations. An approximate analytical model of the switch performance is also proposed. To further exploit the potential of the NoC fabrics and their modularity features, a high capacity Clos switch with Multi-Directional NoC (MDN) modules is presented. The Clos-MDN switching architecture exhibits a more compact layout than the Clos-UDN switch. It scales better and faster in port count and traffic load. Results achieved in this thesis demonstrate the high performance, expandability and programmability features of the proposed packet-switches which makes them promising candidates for the next-generation data center networking infrastructure

    Analysis of Backward Congestion Notification (BCN) for Ethernet In Datacenter Applications

    No full text

    Hierarchical network topographical routing

    Get PDF
    Within the last 10 years the content consumption model that underlies many of the assumptions about traffic aggregation within the Internet has changed; the previous short burst transfer followed by longer periods of inactivity that allowed for statistical aggregation of traffic has been increasingly replaced by continuous data transfer models. Approaching this issue from a clean slate perspective; this work looks at the design of a network routing structure and supporting protocols for assisting in the delivery of large scale content services. Rather than approaching a content support model through existing IP models the work takes a fresh look at Internet routing through a hierarchical model in order to highlight the benefits that can be gained with a new structural Internet or through similar modifications to the existing IP model. The work is divided into three major sections: investigating the existing UK based Internet structure as compared to the traditional Autonomous System (AS) Internet structural model; a localised hierarchical network topographical routing model; and intelligent distributed localised service models. The work begins by looking at the United Kingdom (UK) Internet structure as an example of a current generation technical and economic model with shared access to the last mile connectivity and a large scale wholesale network between Internet Service Providers (ISPs) and the end user. This model combined with the Internet Protocol (IP) address allocation and transparency of the wholesale network results in an enforced inefficiency within the overall network restricting the ability of ISPs to collaborate. From this model a core / edge separation hierarchical virtual tree based routing protocol based on the physical network topography (layers 2 and 3) is developed to remove this enforced inefficiency by allowing direct management and control at the lowest levels of the network. This model acts as the base layer for further distributed intelligent services such as management and content delivery to enable both ISPs and third parties to actively collaborate and provide content from the most efficient source
    corecore