18 research outputs found

    Resonant Frequency of Tunable Microstrip Ring Antenna Printed on Isotropic or Uniaxially Anisotropic Substrate

    Get PDF
    In this study, the resonant frequency of annular ring microstrip resonator with uniaxial anisotropic substrate and air gap layer is analyzed. The cavity model for simple ring microstrip antenna is extended with some modifications for the tunable geometry taking into account the anisotropy in the layer. The theoretical resonant frequency results are in very good agreement with the experimental results reported elsewhere. The air gap tuning effect on the resonant characteristics is also investigated for fundamental and higher order modes

    Simulation of Spiral Slot Antennas on Composite Platforms

    Get PDF
    The project goals, plan and accomplishments up to this point are summarized in the viewgraphs. Among the various accomplishments, the most important have been: the development of the prismatic finite element code for doubly curved platforms and its validation with many different antenna configurations; the design and fabrication of a new slot spiral antennas suitable for automobile cellular, GPS and PCs communications; the investigation and development of various mesh truncation schemes, including the perfectly matched absorber and various fast integral equation methods; and the introduction of a frequency domain extrapolation technique (AWE) for predicting broadband responses using only a few samples of the response. This report contains several individual reports most of which have been submitted for publication to referred journals. For a report on the frequency extrapolation technique, the reader is referred to the UM Radiation Laboratory report A total of 14 papers have been published or accepted for publication with the full or partial support of this grant. Several more papers are in preparation

    Recent Advances in Antenna Design for 5G Heterogeneous Networks

    Get PDF
    The aim of this book is to highlight up to date exploited technologies and approaches in terms of antenna designs and requirements. In this regard, this book targets a broad range of subjects, including the microstrip antenna and the dipole and printed monopole antenna. The varieties of antenna designs, along with several different approaches to improve their overall performance, have given this book a great value, in which makes this book is deemed as a good reference for practicing engineers and under/postgraduate students working in this field. The key technology trends in antenna design as part of the mobile communication evolution have mainly focused on multiband, wideband, and MIMO antennas, and all have been clearly presented, studied and implemented within this book. The forthcoming 5G systems consider a truly mobile multimedia platform that constitutes a converged networking arena that not only includes legacy heterogeneous mobile networks but advanced radio interfaces and the possibility to operate at mm wave frequencies to capitalize on the large swathes of available bandwidth. This provides the impetus for a new breed of antenna design that, in principle, should be multimode in nature, energy efficient, and, above all, able to operate at the mm wave band, placing new design drivers on the antenna design. Thus, this book proposes to investigate advanced 5G antennas for heterogeneous applications that can operate in the range of 5G spectrums and to meet the essential requirements of 5G systems such as low latency, large bandwidth, and high gains and efficiencies

    Antennas and Propagation

    Get PDF
    This Special Issue gathers topics of utmost interest in the field of antennas and propagation, such as: new directions and challenges in antenna design and propagation; innovative antenna technologies for space applications; metamaterial, metasurface and other periodic structures; antennas for 5G; electromagnetic field measurements and remote sensing applications

    Static and reconfigurable devices for near-field and far-field terahertz applications

    Get PDF
    The terahertz frequency electromagnetic radiation has gathered a growing interest from the scientific and technological communities in the last 30 years, due to its capability to penetrate common materials, such as paper, fabrics, or some plastics and offer information on a length scale between 100 µm and 1 mm. Moreover, terahertz radiation can be employed for wireless communications, because it is able to sustain terabit-per-second wireless links, opening to the possibility of a new generation of data networks. However, the terahertz band is a challenging range of the electromagnetic spectrum in terms of technological development and it falls amidst the microwave and optical techniques. Even though this so-called “terahertz gap” is progressively narrowing, the demand of efficient terahertz sources and detectors, as well as passive components for the management of terahertz radiation, is still high. In fact, novel strategies are currently under investigation, aiming at improving the performance of terahertz devices and, at the same time, at reducing their structure complexity and fabrication costs. In this PhD work, two classes of devices are studied, one for near-field focusing and one for far-field radiation with high directivity. Some solutions for their practical implementation are presented. The first class encompasses several configurations of diffractive lenses for focusing terahertz radiation. A configuration for a terahertz diffractive lens is proposed, numerically optimized, and experimentally evaluated. It shows a better resolution than a standard configuration. Moreover, this lens is investigated with regard to the possibility to develop terahertz diffractive lenses with a tunable focal length by means of an electro-optical control. Preliminary numerical data present a dual-focus capability at terahertz frequencies. The second class encompasses advanced radiating systems for controlling the far-field radiating features at terahertz frequencies. These are designed by means of the formalism of leaky-wave theory. Specifically, the use of an electro-optical material is considered for the design of a leaky-wave antenna operating in the terahertz range, achieving very promising results in terms of reconfigurability, efficiency, and radiating capabilities. Furthermore, different metasurface topologies are studied. Their analytical and numerical investigation reveals a high directivity in radiating performance. Directions for the fabrication and experimental test at terahertz frequencies of the proposed radiating structures are addressed

    Metamaterial

    Get PDF
    In-depth analysis of the theory, properties and description of the most potential technological applications of metamaterials for the realization of novel devices such as subwavelength lenses, invisibility cloaks, dipole and reflector antennas, high frequency telecommunications, new designs of bandpass filters, absorbers and concentrators of EM waves etc. In order to create a new devices it is necessary to know the main electrodynamical characteristics of metamaterial structures on the basis of which the device is supposed to be created. The electromagnetic wave scattering surfaces built with metamaterials are primarily based on the ability of metamaterials to control the surrounded electromagnetic fields by varying their permeability and permittivity characteristics. The book covers some solutions for microwave wavelength scales as well as exploitation of nanoscale EM wavelength such as visible specter using recent advances of nanotechnology, for instance in the field of nanowires, nanopolymers, carbon nanotubes and graphene. Metamaterial is suitable for scholars from extremely large scientific domain and therefore given to engineers, scientists, graduates and other interested professionals from photonics to nanoscience and from material science to antenna engineering as a comprehensive reference on this artificial materials of tomorrow

    1-D broadside-radiating leaky-wave antenna based on a numerically synthesized impedance surface

    Get PDF
    A newly-developed deterministic numerical technique for the automated design of metasurface antennas is applied here for the first time to the design of a 1-D printed Leaky-Wave Antenna (LWA) for broadside radiation. The surface impedance synthesis process does not require any a priori knowledge on the impedance pattern, and starts from a mask constraint on the desired far-field and practical bounds on the unit cell impedance values. The designed reactance surface for broadside radiation exhibits a non conventional patterning; this highlights the merit of using an automated design process for a design well known to be challenging for analytical methods. The antenna is physically implemented with an array of metal strips with varying gap widths and simulation results show very good agreement with the predicted performance

    Beam scanning by liquid-crystal biasing in a modified SIW structure

    Get PDF
    A fixed-frequency beam-scanning 1D antenna based on Liquid Crystals (LCs) is designed for application in 2D scanning with lateral alignment. The 2D array environment imposes full decoupling of adjacent 1D antennas, which often conflicts with the LC requirement of DC biasing: the proposed design accommodates both. The LC medium is placed inside a Substrate Integrated Waveguide (SIW) modified to work as a Groove Gap Waveguide, with radiating slots etched on the upper broad wall, that radiates as a Leaky-Wave Antenna (LWA). This allows effective application of the DC bias voltage needed for tuning the LCs. At the same time, the RF field remains laterally confined, enabling the possibility to lay several antennas in parallel and achieve 2D beam scanning. The design is validated by simulation employing the actual properties of a commercial LC medium

    Advanced radiating systems based on leaky wave and nondiffracting waves

    Get PDF
    In recent years, microwave, millimeter-wave, and THz applications such as medical and security imaging, wireless power transfer, and near-field focusing, just to mention but a few, have gained much attention in the area of ICT due to their potentially high social impact. On one hand, the need of highly-directive THz sensors with tunable radiating features in the far-field region has recently boosted the research activity in the design of flexible, low-cost and low-profile devices. On the other hand, it is of paramount importance to focus energy in the near-field region, and thus the generation of limited-diffraction waves in the microwave and millimeter-wave regime is a topic of recent increasing interest. In this context, leaky-wave theory is an elegant and extremely useful formalism which allows for describing in a common fashion guiding and radiating phenomena in both the near field and the far field, spanning frequencies from microwaves to optics passing through THz. In this PhD thesis we aim to exploit the intrinsic versatility of the leakywave approach to design advanced radiating systems for controlling the far-field radiating features at THz frequencies and for focusing electromagnetic radiation in the near field at millimeter waves. Specifically, the use of relatively new materials such as graphene and liquid crystals has been considered for the design of leaky-wave based radiators, achieving very promising results in terms of reconfigurability, efficiency, and radiating capabilities. In this context, an original theoretical analysis has provided new general formulas for the evaluation of the radiating features (e.g., half-power beamwidth, sidelobe level, etc.) of leaky-wave antennas. Indeed, the current formulations are based on several simplifying hypotheses which do not allow for an accurate evaluation of the beamwidth in different situations. In addition to the intriguing reconfigurable capabilities offered by leaky waves in far-field applications, interesting focusing capabilities can be obtained in the near field. In particular, it is shown that leaky waves can profitably be used to generate limited-diffraction Bessel beams by means of narrow-band radiators in the microwave range. Also, the use of higher-order leaky-wave modes allows for achieving almost the same performance in the millimeter-wave range, where previous designs were subjected to severe fabrication issues. Even more interestingly, the limited-diffractive character of Bessel beams can also be used to generate limited-diffraction pulses as superpositions of monochromatic Bessel beams over a considerable fractional bandwidth. In this context, a novel theoretical framework has been developed to understand the practical limitations to efficiently generate limited-diffraction, limited-dispersion pulses, such as X-waves, in the microwave/millimeter-wave range. As a result of this investigation, a class of wideband radiators has been thoroughly analyzed, showing promising capabilities for the generation of both zeroth-order and higher-order Xwaves. The latter may pave the way for the first localized transmission of orbital angular momentum in the microwave range
    corecore