316 research outputs found

    Towards predicting immersion in surround sound music reproduction from sound field features

    Get PDF
    When evaluating surround sound loudspeaker reproduction, perceptual effects are commonly analyzed in relationship to different loudspeaker configurations. The presented work contributes to this by modeling perceptual effects based on acoustic properties of various reproduction formats. A model of immersion in music listening is derived from the results of an experimental study analyzing the psychological construct of immersive music experience. The proposed approach is evaluated with respect to the relationship between immersion ratings and sound field features obtained from re-recordings of the stimuli using a spherical microphone array at the listening position. Spatial sound field parameters such as inter-aural cross-correlation (IACC), diffuseness and directivity are found to be of particular relevance. Further, immersion is observed to reach a point of saturation with greater numbers of loudspeakers, which is confirmed to be predictable from the physical properties of the sound field. Although effects related to participants and musical pieces outweigh the impact of sound field features, the proposed approach is found to be suitable for predicting population-average ratings, i.e. immersion experienced by an average listener for unknown content. The proposed method could complement existing research on multichannel loudspeaker reproduction by establishing a more generalizable framework independent of particular speaker setups

    Ambisonics

    Get PDF
    This open access book provides a concise explanation of the fundamentals and background of the surround sound recording and playback technology Ambisonics. It equips readers with the psychoacoustical, signal processing, acoustical, and mathematical knowledge needed to understand the inner workings of modern processing utilities, special equipment for recording, manipulation, and reproduction in the higher-order Ambisonic format. The book comes with various practical examples based on free software tools and open scientific data for reproducible research. The book’s introductory section offers a perspective on Ambisonics spanning from the origins of coincident recordings in the 1930s to the Ambisonic concepts of the 1970s, as well as classical ways of applying Ambisonics in first-order coincident sound scene recording and reproduction that have been practiced since the 1980s. As, from time to time, the underlying mathematics become quite involved, but should be comprehensive without sacrificing readability, the book includes an extensive mathematical appendix. The book offers readers a deeper understanding of Ambisonic technologies, and will especially benefit scientists, audio-system and audio-recording engineers. In the advanced sections of the book, fundamentals and modern techniques as higher-order Ambisonic decoding, 3D audio effects, and higher-order recording are explained. Those techniques are shown to be suitable to supply audience areas ranging from studio-sized to hundreds of listeners, or headphone-based playback, regardless whether it is live, interactive, or studio-produced 3D audio material

    Comparison of sound reproduction using higher order loudspeakers and equivalent line arrays in free-field conditions

    Get PDF
    Higher order sound sources of Nth order can radiate sound with 2N + 1 orthogonal radiation patterns, which can be represented as phase modes or, equivalently, amplitude modes. This paper shows that each phase mode response produces a spiral wave front with a different spiral rate, and therefore a different direction of arrival of sound. Hence, for a given receiver position a higher order source is equivalent to a linear array of 2N + 1 monopole sources. This interpretation suggests performance similar to a circular array of higher order sources can be produced by an array of sources, each of which consists of a line array having monopoles at the apparent source locations of the corresponding phase modes. Simulations of higher order arrays and arrays of equivalent line sources are presented. It is shown that the interior fields produced by the two arrays are essentially the same, but that the exterior fields differ because the higher order sources produces different equivalent source locations for field positions outside the array. This work provides an explanation of the fact that an array of L Nth order sources can reproduce sound fields whose accuracy approaches the performance of (2N + 1)L monopoles

    Surround by Sound: A Review of Spatial Audio Recording and Reproduction

    Get PDF
    In this article, a systematic overview of various recording and reproduction techniques for spatial audio is presented. While binaural recording and rendering is designed to resemble the human two-ear auditory system and reproduce sounds specifically for a listener’s two ears, soundfield recording and reproduction using a large number of microphones and loudspeakers replicate an acoustic scene within a region. These two fundamentally different types of techniques are discussed in the paper. A recent popular area, multi-zone reproduction, is also briefly reviewed in the paper. The paper is concluded with a discussion of the current state of the field and open problemsThe authors acknowledge National Natural Science Foundation of China (NSFC) No. 61671380 and Australian Research Council Discovery Scheme DE 150100363

    Should a movie have two different soundtracks for its stereoscopic and non-stereoscopic versions? A study on the front/rear balance

    No full text
    Best paper awardInternational audienceFew psychoacoustic studies have been made on the influence of stereoscopy on the sound mixing of movies. Yet very different opinions can be found among scientific, esthetical or technical communities. Some argue that sound needs to be mixed differently for stereoscopic movies, whereas others pretend that image has actually caught up with sound, that was already "three-dimensional" and should not therefore be affected by stereoscopy. In the present experiment, expert subjects were asked to achieve surround sound ambiance mixings for eleven short sequences presented in both stereoscopic and nonstereoscopic versions. The results suggest that the influence of stereoscopy on the front/rear balance strongly depends on the content of the sequence and only appears in a few specific situations

    Recording, Analysis and Playback of Spatial Sound Field using Novel Design Methods of Transducer Arrays

    Get PDF
    Nowadays, a growing interest in the recording and reproduction of spatial audio has been observed. With virtual and augmented reality technologies spreading fast thanks to entertainment and video game industries, also the professional opportunities in the field of engineering are evolving. However, despite many microphone arrays are reaching the market, most of them is not optimized for engineering or diagnostic use and remains mainly confined to voice and music recordings. In this thesis, the design of two new systems for recording and analysing the spatial distribution of sound energy, employing arrays of transducers and cameras, is discussed. Both acoustic and visual spatial information is recorded and combined together to produce static and dynamic colour maps, with a specially designed software and employing Ambisonics and Spatial PCM Sampling (SPS), two common spatial audio formats, for signals processing. The first solution consists in a microphone array made of 32 capsules and a circular array of eight cameras, optimized for low frequencies. The size of the array is designed accordingly to the frequency range of interest for automotive Noise, Vibration & Harshness (NVH) applications. The second system is an underwater probe with four hydrophones and a panoramic camera, with which it is possible to monitor the effects of underwater noise produced by human activities on marine species. Finite Elements Method (FEM) simulations have been used to calculate the array response, thus deriving the filtering matrix and performing theoretical evaluation of the spatial performance. Field tests of the proposed solutions are presented in comparison with the current state-of-the-art equipment. The faithful reproduction of the spatial sound field arouses equally interest. Hence, a method to playback panoramic video with spatial audio is presented, making use of Virtual Reality (VR) technology, spatial audio, individualized Head Related Transfer Functions (HRTFs) and personalized headphones equalization. The work in its entirety presents a complete methodology for recording, analysing and reproducing the spatial information of soundscapes
    • …
    corecore