2,363 research outputs found

    The Effects of JIT on the Development of Productivity Norms

    Get PDF
    Low inventory, or just-in-time (JIT) manufacturing systems, enjoy increasing application worldwide, yet the behavioral effects of such systems remain largely unexplored. Operations Research (OR) models of low inventory systems typically make a simplifying assumption that individual worker processing times are independent random variables. This leads to predictions that low-inventory systems will exhibit production interruptions. Yet empirical results suggest that low-inventory systems do not exhibit the predicted productivity losses. This paper develops a model integrating feedback, goal-setting, group cohesiveness, task norms, and peer pressure to predict how individual behavior may adjust to alleviate production interruptions in low-inventory systems. In doing so we integrate previous research on the development of task norms. Findings suggest that low-inventory systems induce individual and group responses that cause behavioral changes that mitigate production interruptions

    Simple bounds for queueing systems with breakdowns

    Get PDF
    Computationally attractive and intuitively obvious simple bounds are proposed for finite service systems which are subject to random breakdowns. The services are assumed to be exponential. The up and down periods are allowed to be generally distributed. The bounds are based on product-form modifications and depend only on means. A formal proof is presented. This proof is of interest in itself. Numerical support indicates a potential usefulness for quick engineering and performance evaluation purposes

    Good probabilistic ideas are often simple

    Get PDF

    A new approach for modelling variability in residential construction projects

    Get PDF
    The construction industry is plagued by long cycle times caused by variability in the supply chain. Variations or undesirable situations are the result of factors such as non-standard practices, work site accidents, inclement weather conditions and faults in design. This paper uses a new approach for modelling variability in construction by linking relative variability indicators to processes. Mass homebuilding sector was chosen as the scope of the analysis because data is readily available. Numerous simulation experiments were designed by varying size of capacity buffers in front of trade contractors, availability of trade contractors, and level of variability in homebuilding processes. The measurements were shown to lead to an accurate determination of relationships between these factors and production parameters. The variability indicator was found to dramatically affect the tangible performance measures such as home completion rates. This study provides for future analysis of the production homebuilding sector, which may lead to improvements in performance and a faster product delivery to homebuyers

    The preemptive repeat hybrid server interruption model

    Get PDF
    We analyze a discrete-time queueing system with server interruptions and a hybrid preemptive repeat interruption discipline. Such a discipline encapsulates both the preemptive repeat identical and the preemptive repeat different disciplines. By the introduction and analysis of so-called service completion times, we significantly reduce the complexity of the analysis. Our results include a.o. the probability generating functions and moments of queue content and delay. Finally, by means of some numerical examples, we assess how performance measures are affected by the specifics of the interruption discipline

    Discrete-time queues with variable service capacity: a basic model and its analysis

    Get PDF
    In this paper, we present a basic discrete-time queueing model whereby the service process is decomposed in two (variable) components: the demand of each customer, expressed in a number of work units needed to provide full service of the customer, and the capacity of the server, i.e., the number of work units that the service facility is able to perform per time unit. The model is closely related to multi-server queueing models with server interruptions, in the sense that the service facility is able to deliver more than one unit of work per time unit, and that the number of work units that can be executed per time unit is not constant over time. Although multi-server queueing models with server interruptions-to some extent-allow us to study the concept of variable capacity, these models have a major disadvantage. The models are notoriously hard to analyze and even when explicit expressions are obtained, these contain various unknown probabilities that have to be calculated numerically, which makes the expressions difficult to interpret. For the model in this paper, on the other hand, we are able to obtain explicit closed-form expressions for the main performance measures of interest. Possible applications of this type of queueing model are numerous: the variable service capacity could model variable available bandwidths in communication networks, a varying production capacity in factories, a variable number of workers in an HR-environment, varying capacity in road traffic, etc

    Performance analysis of priority queueing systems in discrete time

    Get PDF
    The integration of different types of traffic in packet-based networks spawns the need for traffic differentiation. In this tutorial paper, we present some analytical techniques to tackle discrete-time queueing systems with priority scheduling. We investigate both preemptive (resume and repeat) and non-preemptive priority scheduling disciplines. Two classes of traffic are considered, high-priority and low-priority traffic, which both generate variable-length packets. A probability generating functions approach leads to performance measures such as moments of system contents and packet delays of both classes

    Impact of Activity Sequencing on Reducing Variability

    Get PDF
    • …
    corecore