33,107 research outputs found

    A genetic algorithm for the design of a fuzzy controller for active queue management

    Get PDF
    Active queue management (AQM) policies are those policies of router queue management that allow for the detection of network congestion, the notification of such occurrences to the hosts on the network borders, and the adoption of a suitable control policy. This paper proposes the adoption of a fuzzy proportional integral (FPI) controller as an active queue manager for Internet routers. The analytical design of the proposed FPI controller is carried out in analogy with a proportional integral (PI) controller, which recently has been proposed for AQM. A genetic algorithm is proposed for tuning of the FPI controller parameters with respect to optimal disturbance rejection. In the paper the FPI controller design metodology is described and the results of the comparison with random early detection (RED), tail drop, and PI controller are presented

    FavorQueue: A parameterless active queue management to improve TCP traffic performance

    Get PDF
    This paper presents and analyzes the implementation of a novel active queue management (AQM) named FavorQueue that aims to improve delay transfer of short lived TCP flows over best-effort networks. The idea is to dequeue packets that do not belong to a flow previously enqueued first. The rationale is to mitigate the delay induced by long-lived TCP flows over the pace of short TCP data requests and to prevent dropped packets at the beginning of a connection and during recovery period. Although the main target of this AQM is to accelerate short TCP traffic, we show that FavorQueue does not only improve the performance of short TCP traffic but also improves the performance of all TCP traffic in terms of drop ratio and latency whatever the flow size. In particular, we demonstrate that FavorQueue reduces the loss of a retransmitted packet, decreases the number of dropped packets recovered by RTO and improves the latency up to 30% compared to DropTail. Finally, we show that this scheme remains compliant with recent TCP updates such as the increase of the initial slow-start value

    Computing Safe Contention Bounds for Multicore Resources with Round-Robin and FIFO Arbitration

    Get PDF
    Numerous researchers have studied the contention that arises among tasks running in parallel on a multicore processor. Most of those studies seek to derive a tight and sound upper-bound for the worst-case delay with which a processor resource may serve an incoming request, when its access is arbitrated using time-predictable policies such as round-robin or FIFO. We call this value upper-bound delay ( ubd ). Deriving trustworthy ubd statically is possible when sufficient public information exists on the timing latency incurred on access to the resource of interest. Unfortunately however, that is rarely granted for commercial-of-the-shelf (COTS) processors. Therefore, the users resort to measurement observations on the target processor and thus compute a “measured” ubdm . However, using ubdm to compute worst-case execution time values for programs running on COTS multicore processors requires qualification on the soundness of the result. In this paper, we present a measurement-based methodology to derive a ubdm under round-robin (RoRo) and first-in-first-out (FIFO) arbitration, which accurately approximates ubd from above, without needing latency information from the hardware provider. Experimental results, obtained on multiple processor configurations, demonstrate the robustness of the proposed methodology.The research leading to this work has received funding from: the European Union’s Horizon 2020 research and innovation programme under grant agreement No 644080(SAFURE); the European Space Agency under Contract 789.2013 and NPI Contract 40001102880; and COST Action IC1202, Timing Analysis On Code-Level (TACLe). This work has also been partially supported by the Spanish Ministry of Science and Innovation under grant TIN2015-65316-P. Jaume Abella has been partially supported by the MINECO under Ramon y Cajal postdoctoral fellowship number RYC-2013-14717. The authors would like to thanks Paul Caheny for his help with the proofreading of this document.Peer ReviewedPostprint (author's final draft

    A regret model applied to the maximum coverage location problem with queue discipline

    Get PDF
    This article discusses issues related to the location and allocation problems where is intended to demonstrate, through the random number generation, the influence of congestion of such systems in the final solutions. It is presented an algorithm that, in addition to the GRASP, incorporates the Regret with the pminmax method to evaluate the heuristic solution obtained in regard to its robustness for different scenarios. To the well know Maximum Coverage Location Problem from Church and Revelle [1] an alternative perspective is added in which the choice behavior of the server does not only depend on the elapsed time from the demand point looking to the center, but also includes the waiting time for service conditioned by a waiting queue.N/

    A Priority-based Fair Queuing (PFQ) Model for Wireless Healthcare System

    Get PDF
    Healthcare is a very active research area, primarily due to the increase in the elderly population that leads to increasing number of emergency situations that require urgent actions. In recent years some of wireless networked medical devices were equipped with different sensors to measure and report on vital signs of patient remotely. The most important sensors are Heart Beat Rate (ECG), Pressure and Glucose sensors. However, the strict requirements and real-time nature of medical applications dictate the extreme importance and need for appropriate Quality of Service (QoS), fast and accurate delivery of a patient’s measurements in reliable e-Health ecosystem. As the elderly age and older adult population is increasing (65 years and above) due to the advancement in medicine and medical care in the last two decades; high QoS and reliable e-health ecosystem has become a major challenge in Healthcare especially for patients who require continuous monitoring and attention. Nevertheless, predictions have indicated that elderly population will be approximately 2 billion in developing countries by 2050 where availability of medical staff shall be unable to cope with this growth and emergency cases that need immediate intervention. On the other side, limitations in communication networks capacity, congestions and the humongous increase of devices, applications and IOT using the available communication networks add extra layer of challenges on E-health ecosystem such as time constraints, quality of measurements and signals reaching healthcare centres. Hence this research has tackled the delay and jitter parameters in E-health M2M wireless communication and succeeded in reducing them in comparison to current available models. The novelty of this research has succeeded in developing a new Priority Queuing model ‘’Priority Based-Fair Queuing’’ (PFQ) where a new priority level and concept of ‘’Patient’s Health Record’’ (PHR) has been developed and integrated with the Priority Parameters (PP) values of each sensor to add a second level of priority. The results and data analysis performed on the PFQ model under different scenarios simulating real M2M E-health environment have revealed that the PFQ has outperformed the results obtained from simulating the widely used current models such as First in First Out (FIFO) and Weight Fair Queuing (WFQ). PFQ model has improved transmission of ECG sensor data by decreasing delay and jitter in emergency cases by 83.32% and 75.88% respectively in comparison to FIFO and 46.65% and 60.13% with respect to WFQ model. Similarly, in pressure sensor the improvements were 82.41% and 71.5% and 68.43% and 73.36% in comparison to FIFO and WFQ respectively. Data transmission were also improved in the Glucose sensor by 80.85% and 64.7% and 92.1% and 83.17% in comparison to FIFO and WFQ respectively. However, non-emergency cases data transmission using PFQ model was negatively impacted and scored higher rates than FIFO and WFQ since PFQ tends to give higher priority to emergency cases. Thus, a derivative from the PFQ model has been developed to create a new version namely “Priority Based-Fair Queuing-Tolerated Delay” (PFQ-TD) to balance the data transmission between emergency and non-emergency cases where tolerated delay in emergency cases has been considered. PFQ-TD has succeeded in balancing fairly this issue and reducing the total average delay and jitter of emergency and non-emergency cases in all sensors and keep them within the acceptable allowable standards. PFQ-TD has improved the overall average delay and jitter in emergency and non-emergency cases among all sensors by 41% and 84% respectively in comparison to PFQ model
    corecore