671 research outputs found

    Performance of turbo coded DS-CDMA systems in correlated and uncorrelated satellite communication channels

    Get PDF
    Word processed copy.Includes bibliographical references (leaves 82-88).This thesis aims at presenting the perfonnance of turbo codes in the correlated and uncorrelated satellite fading channel. Turbo codes are known to give very good perfonnance results in A WGN channels, especially for very large input message length codes or interleaver sizes. It can be shown that good perfonnance of the turbo codes can be achieved with small interleaver sizes in a satellite channel

    Performance Analysis of BER in CDMA using Various Coding & Simulation Techniques

    Get PDF
    Wireless Communication is the most important part of our life in today’s time. CDMA system has made it more secure system to communicate within the system. CDMA system has been developed enough to improve various problems like multipath fading, interference, cross talk etc. This paper inculcated various approaches to improve BER in CDMA system with different Coding & Simulation Techniques. This also represents various advantages and limitations of different evaluation/analysis methodology used to evaluate BER

    Outage Analysis of Hybrid Satellite-Terrestrial Cooperative Network with Best Relay Selection

    Get PDF
    In this paper, we study the performance of a downlink hybrid satellite-terrestrial cooperative network. The decode-andforward scheme is used and a selection of the best relay terminal is implemented. In this proposed system, a two time-slot scenario is considered. The first time slot is used by the satellite for broadcasting the information to the terrestrial relays and the destination. In the second time slot, only the best relay which provides the maximal received signal-to-noise (SNR) ratio at the destination is selected for forwarding the information. Then, both signals are combined using the maximum ratio combining (MRC) technique. The analytical expression of the outage probabiliy is evaluated and is then verified with the simulation. The results show that our analytical expression matched well to the simulation results at the high SNR regime

    Underwater acoustic communications and adaptive signal processing

    Get PDF
    This dissertation proposes three new algorithms for underwater acoustic wireless communications. One is a new tail-biting circular MAP decoder for full tail-biting convolution (FTBC) codes for very short data blocks intended for Internet of Underwater Things (IoUT). The proposed algorithm was evaluated by ocean experiments and computer simulations on both Physical (PHY) and Media access control (MAC) layers. The ocean experimental results show that without channel equalization, the full tail-biting convolution (FTBC) codes with short packet lengths not only can perform similarly to zero-tailing convolution (ZTC) codes in terms of bit error rate (BER) in the PHY layer. Computer simulation results show that the FTBC codes outperform the ZTC codes in terms of MAC layer metrics, such as collision rate and bandwidth utilization, in a massive network of battery powered IoUT devices. Second, this dissertation also proposes a new approach to utilizing the underwater acoustic (UWA) wireless communication signals acquired in a real-world experiment as a tool for evaluating new coding and modulation schemes in realistic doubly spread UWA channels. This new approach, called passband data reuse, provides detailed procedures for testing the signals under test (SUT) that change or add error correction coding, change bit to symbol mapping (baseband modulation) schemes from a set of original experimental data --Abstract, page iv

    Space-Time Codes Concatenated with Turbo Codes over Fading Channels

    Get PDF
    The uses of space-time code (STC) and iterative processing have enabled robust communications over fading channels at previously unachievable signal-to-noise ratios. Maintaining desired transmission rate while improving the diversity from STC is challenging, and the performance of the STC suffers considerably due to lack of channel state information (CSI). This dissertation research addresses issues of considerable importance in the design of STC with emphasis on efficient concatenation of channel coding and STC with theoretical bound derivation of the proposed schemes, iterative space-time trellis coding (STTC), and differential space-time codes. First, we concatenate space-time block code (STBC) with turbo code for improving diversity gain as well as coding gain. Proper soft-information sharing is indispensable to the iterative decoding process. We derive the required soft outputs from STBC decoders for passing to outer turbo code. Traditionally, the performance of STBC schemes has been evaluated under perfect channel estimation. For fast time-varying channel, obtaining the CSI is tedious if not impossible. We introduce a scheme of calculating the CSI at the receiver from the received signal without the explicit channel estimation. The encoder of STTC, which is generally decoded using Viterbi like algorithm, is based on a trellis structure. This trellis structure provides an inherent advantage for the STTC scheme that an iterative decoding is feasible with the minimal addition computational complexity. An iteratively decoded space-time trellis coding (ISTTC) is proposed in this dissertation, where the STTC schemes are used as constituent codes of turbo code. Then, the performance upper bound of the proposed ISTTC is derived. Finally, for implementing STBC without channel estimation and maintaining trans- mission rate, we concatenate differential space-time block codes (DSTBC) with ISTTC. The serial concatenation of DSTBC or STBC with ISTTC offers improving performance, even without an outer channel code. These schemes reduce the system complexity com- pared to the standalone ISTTC and increase the transmission rate under the same SNR condition. Detailed design procedures of these proposed schemes are analyzed

    5G無線通信における誤り訂正符号化方式の評価に関する研究

    Get PDF
    早大学位記番号:新8267早稲田大
    corecore