444 research outputs found

    Non-Stationary Modelling and Simulation of Near-Source Earthquake Ground Motion:ARMA and neural network methods

    Get PDF

    A Bayesian Framework for Estimating Seismic Wave Arrival Time

    Get PDF
    Because earthquakes have a large impact on human society, statistical methods for better studying earthquakes are required. One characteristic of earthquakes is the arrival time of seismic waves at a seismic signal sensor. Once we can estimate the earthquake arrival time accurately, the earthquake location can be triangulated, and assistance can be sent to that area correctly. This study presents a Bayesian framework to predict the arrival time of seismic waves with associated uncertainty. We use a change point framework to model the different conditions before and after the seismic wave arrives. To evaluate the performance of the model, we conducted a simulation study where we could evaluate the predictive performance of the model framework. The results show that our method has acceptable performance of arrival time prediction with accounting for the uncertainty

    Response Analysis of Wood Structures Under Natural Hazard Dynamic Loads

    Get PDF
    The basic requirements needed for response analysis of wood structures against natural hazards are reviewed. A method for stochastic dynamic analysis of wood structures, which allows investigations into their performance and safety under natural hazards such as earthquakes and severe winds, is presented. To illustrate the method, earthquake ground motions are modeled as a stochastic process with Gaussian white noise properties. A single-degree-of-freedom wood structural system is modeled by a hysteretic constitutive law that produces a smoothly varying hysteresis. It models previously observed behavior of wood joints and structural systems, namely, (1) nonlinear, inelastic behavior, (2) stiffness degradation, (3) strength degradation, and (4) pinching. The constitutive law takes into account the experimentally observed dependence of wood joints' response to the input and response at an earlier time (known as memory). Hysteresis shapes produced by the proposed model compare favorably with common wood joints. The hysteresis model can produce a wide variety of hysteresis shapes, degradations, and pinching behavior to model a whole gamut of possible combinations of materials and joint configurations in wood construction. The nonstationary response statistics of a single-degree-of-freedom wood building subjected to white noise excitations are obtained by Monte Carlo simulation and stochastic equivalent linearization. The latter is shown to give a reasonably accurate prediction of the system's response statistics, which may be used in calculating design response values. The method of analysis is general and may be used to study the response of various kinds of structural systems, including multi-degree-of-freedom systems, as long as appropriate structural models are available and appropriate hysteresis model parameters for these systems are known

    Damage Localization and Quantification of Earthquake Excited RC-Frames

    Get PDF

    Improving Loss Estimation for Woodframe Buildings. Volume 2: Appendices

    Get PDF
    This report documents Tasks 4.1 and 4.5 of the CUREE-Caltech Woodframe Project. It presents a theoretical and empirical methodology for creating probabilistic relationships between seismic shaking severity and physical damage and loss for buildings in general, and for woodframe buildings in particular. The methodology, called assembly-based vulnerability (ABV), is illustrated for 19 specific woodframe buildings of varying ages, sizes, configuration, quality of construction, and retrofit and redesign conditions. The study employs variations on four basic floorplans, called index buildings. These include a small house and a large house, a townhouse and an apartment building. The resulting seismic vulnerability functions give the probability distribution of repair cost as a function of instrumental ground-motion severity. These vulnerability functions are useful by themselves, and are also transformed to seismic fragility functions compatible with the HAZUS software. The methods and data employed here use well-accepted structural engineering techniques, laboratory test data and computer programs produced by Element 1 of the CUREE-Caltech Woodframe Project, other recently published research, and standard construction cost-estimating methods. While based on such well established principles, this report represents a substantially new contribution to the field of earthquake loss estimation. Its methodology is notable in that it calculates detailed structural response using nonlinear time-history structural analysis as opposed to the simplifying assumptions required by nonlinear pushover methods. It models physical damage at the level of individual building assemblies such as individual windows, segments of wall, etc., for which detailed laboratory testing is available, as opposed to two or three broad component categories that cannot be directly tested. And it explicitly models uncertainty in ground motion, structural response, component damageability, and contractor costs. Consequently, a very detailed, verifiable, probabilistic picture of physical performance and repair cost is produced, capable of informing a variety of decisions regarding seismic retrofit, code development, code enforcement, performance-based design for above-code applications, and insurance practices
    • …
    corecore