378 research outputs found

    Real-time Sound Source Separation For Music Applications

    Get PDF
    Sound source separation refers to the task of extracting individual sound sources from some number of mixtures of those sound sources. In this thesis, a novel sound source separation algorithm for musical applications is presented. It leverages the fact that the vast majority of commercially recorded music since the 1950s has been mixed down for two channel reproduction, more commonly known as stereo. The algorithm presented in Chapter 3 in this thesis requires no prior knowledge or learning and performs the task of separation based purely on azimuth discrimination within the stereo field. The algorithm exploits the use of the pan pot as a means to achieve image localisation within stereophonic recordings. As such, only an interaural intensity difference exists between left and right channels for a single source. We use gain scaling and phase cancellation techniques to expose frequency dependent nulls across the azimuth domain, from which source separation and resynthesis is carried out. The algorithm is demonstrated to be state of the art in the field of sound source separation but also to be a useful pre-process to other tasks such as music segmentation and surround sound upmixing

    Analysis and resynthesis of polyphonic music

    Get PDF
    This thesis examines applications of Digital Signal Processing to the analysis, transformation, and resynthesis of musical audio. First I give an overview of the human perception of music. I then examine in detail the requirements for a system that can analyse, transcribe, process, and resynthesise monaural polyphonic music. I then describe and compare the possible hardware and software platforms. After this I describe a prototype hybrid system that attempts to carry out these tasks using a method based on additive synthesis. Next I present results from its application to a variety of musical examples, and critically assess its performance and limitations. I then address these issues in the design of a second system based on Gabor wavelets. I conclude by summarising the research and outlining suggestions for future developments

    The DiTME Project: interdisciplinary research in music technology

    Get PDF
    This paper profiles the emergence of a significant body of research in audio engineering within the Faculties of Engineering and Applied Arts at Dublin Institute of Technology. Over a period of five years the group has had significant success in completing a Strand 3 research project entitled Digital Tools for Music Education (DiTME)

    Extended Nonnegative Tensor Factorisation Models for Musical Sound Source Separation

    Get PDF
    Recently, shift-invariant tensor factorisation algorithms have been proposed for the purposes of sound source separation of pitched musical instruments. However, in practice, existing algorithms require the use of log-frequency spectrograms to allow shift invariance in frequency which causes problems when attempting to resynthesise the separated sources. Further, it is difficult to impose harmonicity constraints on the recovered basis functions. This paper proposes a new additive synthesis-based approach which allows the use of linear-frequency spectrograms as well as imposing strict harmonic constraints, resulting in an improved model. Further, these additional constraints allow the addition of a source filter model to the factorisation framework, and an extended model which is capable of separating mixtures of pitched and percussive instruments simultaneously

    Perceptually smooth timbral guides by state-space analysis of phase-vocoder parameters

    Get PDF
    Sculptor is a phase-vocoder-based package of programs that allows users to explore timbral manipulation of sound in real time. It is the product of a research program seeking ultimately to perform gestural capture by analysis of the sound a performer makes using a conventional instrument. Since the phase-vocoder output is of high dimensionality — typically more than 1,000 channels per analysis frame—mapping phase-vocoder output to appropriate input parameters for a synthesizer is only feasible in theory

    Singing voice resynthesis using concatenative-based techniques

    Get PDF
    Tese de Doutoramento. Engenharia Informática. Faculdade de Engenharia. Universidade do Porto. 201

    A computational framework for sound segregation in music signals

    Get PDF
    Tese de doutoramento. Engenharia Electrotécnica e de Computadores. Faculdade de Engenharia. Universidade do Porto. 200

    Resynthesis of Acoustic Scenes Combining Sound Source Separation and WaveField Synthesis Techniques

    Full text link
    [ES] La Separacón de Fuentes ha sido un tema de intensa investigación en muchas aplicaciones de tratamiento de señaal, cubriendo desde el procesado de voz al análisis de im'agenes biomédicas. Aplicando estas técnicas a los sistemas de reproducci'on espacial de audio, se puede solucionar una limitaci ón importante en la resíntesis de escenas sonoras 3D: la necesidad de disponer de las se ñales individuales correspondientes a cada fuente. El sistema Wave-field Synthesis (WFS) puede sintetizar un campo acústico mediante arrays de altavoces, posicionando varias fuentes en el espacio. Sin embargo, conseguir las señales de cada fuente de forma independiente es normalmente un problema. En este trabajo se propone la utilización de distintas técnicas de separaci'on de fuentes sonoras para obtener distintas pistas a partir de grabaciones mono o estéreo. Varios métodos de separación han sido implementados y comprobados, siendo uno de ellos desarrollado por el autor. Aunque los algoritmos existentes están lejos de conseguir una alta calidad, se han realizado tests subjetivos que demuestran cómo no es necesario obtener una separación óptima para conseguir resultados aceptables en la reproducción de escenas 3D[EN] Source Separation has been a subject of intense research in many signal processing applications, ranging from speech processing to medical image analysis. Applied to spatial audio systems, it can be used to overcome one fundamental limitation in 3D scene resynthesis: the need of having the independent signals for each source available. Wave-field Synthesis is a spatial sound reproduction system that can synthesize an acoustic field by means of loudspeaker arrays and it is also capable of positioning several sources in space. However, the individual signals corresponding to these sources must be available and this is often a difficult problem. In this work, we propose to use Sound Source Separation techniques in order to obtain different tracks from stereo and mono mixtures. Some separation methods have been implemented and tested, having been one of them developed by the author. Although existing algorithms are far from getting hi-fi quality, subjective tests show how it is not necessary an optimum separation for getting acceptable results in 3D scene reproductionCobos Serrano, M. (2007). Resynthesis of Acoustic Scenes Combining Sound Source Separation and WaveField Synthesis Techniques. http://hdl.handle.net/10251/12515Archivo delegad

    DDX7: Differentiable FM Synthesis of Musical Instrument Sounds

    Get PDF
    FM Synthesis is a well-known algorithm used to generate complex timbre from a compact set of design primitives. Typically featuring a MIDI interface, it is usually impractical to control it from an audio source. On the other hand, Differentiable Digital Signal Processing (DDSP) has enabled nuanced audio rendering by Deep Neural Networks (DNNs) that learn to control differentiable synthesis layers from arbitrary sound inputs. The training process involves a corpus of audio for supervision, and spectral reconstruction loss functions. Such functions, while being great to match spectral amplitudes, present a lack of pitch direction which can hinder the joint optimization of the parameters of FM synthesizers. In this paper, we take steps towards enabling continuous control of a well-established FM synthesis architecture from an audio input. Firstly, we discuss a set of design constraints that ease spectral optimization of a differentiable FM synthesizer via a standard reconstruction loss. Next, we present Differentiable DX7 (DDX7), a lightweight architecture for neural FM resynthesis of musical instrument sounds in terms of a compact set of parameters. We train the model on instrument samples extracted from the URMP dataset, and quantitatively demonstrate its comparable audio quality against selected benchmarks

    Identifying Cover Songs Using Information-Theoretic Measures of Similarity

    Get PDF
    This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/This paper investigates methods for quantifying similarity between audio signals, specifically for the task of cover song detection. We consider an information-theoretic approach, where we compute pairwise measures of predictability between time series. We compare discrete-valued approaches operating on quantized audio features, to continuous-valued approaches. In the discrete case, we propose a method for computing the normalized compression distance, where we account for correlation between time series. In the continuous case, we propose to compute information-based measures of similarity as statistics of the prediction error between time series. We evaluate our methods on two cover song identification tasks using a data set comprised of 300 Jazz standards and using the Million Song Dataset. For both datasets, we observe that continuous-valued approaches outperform discrete-valued approaches. We consider approaches to estimating the normalized compression distance (NCD) based on string compression and prediction, where we observe that our proposed normalized compression distance with alignment (NCDA) improves average performance over NCD, for sequential compression algorithms. Finally, we demonstrate that continuous-valued distances may be combined to improve performance with respect to baseline approaches. Using a large-scale filter-and-refine approach, we demonstrate state-of-the-art performance for cover song identification using the Million Song Dataset.The work of P. Foster was supported by an Engineering and Physical Sciences Research Council Doctoral Training Account studentship
    corecore