313 research outputs found

    Design and Performance Analysis of Functional Split in Virtualized Access Networks

    Get PDF
    abstract: Emerging modular cable network architectures distribute some cable headend functions to remote nodes that are located close to the broadcast cable links reaching the cable modems (CMs) in the subscriber homes and businesses. In the Remote- PHY (R-PHY) architecture, a Remote PHY Device (RPD) conducts the physical layer processing for the analog cable transmissions, while the headend runs the DOCSIS medium access control (MAC) for the upstream transmissions of the distributed CMs over the shared cable link. In contrast, in the Remote MACPHY (R-MACPHY) ar- chitecture, a Remote MACPHY Device (RMD) conducts both the physical and MAC layer processing. The dissertation objective is to conduct a comprehensive perfor- mance comparison of the R-PHY and R-MACPHY architectures. Also, development of analytical delay models for the polling-based MAC with Gated bandwidth alloca- tion of Poisson traffic in the R-PHY and R-MACPHY architectures and conducting extensive simulations to assess the accuracy of the analytical model and to evaluate the delay-throughput performance of the R-PHY and R-MACPHY architectures for a wide range of deployment and operating scenarios. Performance evaluations ex- tend to the use of Ethernet Passive Optical Network (EPON) as transport network between remote nodes and headend. The results show that for long CIN distances above 100 miles, the R-MACPHY architecture achieves significantly shorter mean up- stream packet delays than the R-PHY architecture, especially for bursty traffic. The extensive comparative R-PHY and R-MACPHY comparative evaluation can serve as a basis for the planning of modular broadcast cable based access networks.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Techno-economic analysis of NGNs implementation in rural areas based on the geographic and socio-demographic characteristics of Serbia

    Full text link

    Simulation of CPRI traffic on Optical Ethernet

    Get PDF
    Evolution of mobile networks calls for novel ways of reducing delays while improving the network capacity. All application types require a system to utilize the expanding data. In the future, the projection is that quality of service (QoS) will be a key measurement of any network. Delay and jitter present a challenge to achieving the QoS needed. This is due to the loss of packets experienced during transmission and retransmission. Hence, the thesis proposes a Hybrid switching solution to increase the efficiency of transport networks for mobile data. This is done by designing a model that reduces the number of wavelengths needed to transport Common Public Radio interface (CPRI) over Ethernet while sharing the same optical resources for conventional backhaul traffic. CPRI over Ethernet is an ideal method to aid in better exploitation of the resources. The proposed strategy minimizes the loss of packets by making use of the available gaps during the transmission. Implementing such a model requires a Guaranteed Service Traffic (GST) class, which does not allow for packet loss and is treated as high priority traffic. Additionally, GST has a fixed low delay that makes it resilient to any form of network failures. Moreover, CPRI assists in saving costs by exploiting the unused wavelength capacity left by the GST traffic. Backhaul traffic can exploit this unused capacity to make the system compact. The thesis considers two classes of service levels with possible set of services that have QoS. These are CPRI over Ethernet (CPRIoE) and traditional packet-based Backhaul traffic. CPRIoE is considered as the GST traffic while Backhaul is the Best Effort (BE) traffic. Both traffics are transported over the same links, sharing wavelength resources. The results indicate the effectiveness of combining services in managing multiple flows, thus saving resources and optimizing the network

    Cost and energy efficient operation of converged, reconfigurable optical wireless networks

    Get PDF
    This paper presents a converged fibre-to-the-home (FTTH) based access network architecture featuring wireless services. In order to fulfill the bandwidth demands from end users, a dynamic architecture is proposed with co-existence of LTE, WiMax and UWB technologies. Hybrid wavelength division multiplexing (WDM) and a time division multiplexing (TDM) based optical access network offer reconfigurable provision. This enhances the ability to allocate different wavelengths to different optical networking units (ONUs) on demand. In addition, two different channel routing modules (CRMs) are introduced in order to address the cost effectiveness and energy efficiency issues of the proposed network. Take-up rate adaptive-mode operation and traffic-adaptive power management are utilized to optimize the benefits of low investment cost with energy efficiency. Up to 26% power consumption reduction is achieved at the time of minimum traffic conditions while 10% consumption is achieved at the time of maximum traffic conditions. Besides, 23% energy saving can be achieved compared to conventional systems in fully operated stage

    The Asymmetrical Architecture of New Optical Switch Device

    Get PDF

    Wireless and photonic high-speed communication technologies, circuits and design tools

    Get PDF
    • …
    corecore