548 research outputs found

    Efficient Acquisition and Denoising of Full-Range Event-Related Potentials Following Transient Stimulation of the Auditory Pathway

    Get PDF
    This body of work relates to recent advances in the field of human auditory event-related potentials (ERP), specifically the fast, deconvolution-based ERP acquisition as well as single-response based preprocessing, denoising and subsequent analysis methods. Its goal is the contribution of a cohesive set of methods facilitating the fast, reliable acquisition of the whole electrophysiological response generated by the auditory pathway from the brainstem to the cortex following transient acoustical stimulation. The present manuscript is divided into three sequential areas of investigation : First, the general feasibility of simultaneously acquiring auditory brainstem, middle-latency and late ERP single responses is demonstrated using recordings from 15 normal hearing subjects. Favourable acquisition parameters (i.e., sampling rate, bandpass filter settings and interstimulus intervals) are established, followed by signal analysis of the resulting ERP in terms of their dominant intrinsic scales to determine the properties of an optimal signal representation with maximally reduced sample count by means of nonlinear resampling on a logarithmic timebase. This way, a compression ratio of 16.59 is achieved. Time-scale analysis of the linear-time and logarithmic-time ERP single responses is employed to demonstrate that no important information is lost during compressive resampling, which is additionally supported by a comparative evaluation of the resulting average waveforms - here, all prominent waves remain visible, with their characteristic latencies and amplitudes remaining essentially unaffected by the resampling process. The linear-time and resampled logarithmic-time signal representations are comparatively investigated regarding their susceptibility to the types of physiological and technical noise frequently contaminating ERP recordings. While in principle there already exists a plethora of well-investigated approaches towards the denoising of ERP single-response representations to improve signal quality and/or reduce necessary aquisition times, the substantially altered noise characteristics of the obtained, resampled logarithmic-time single response representations as opposed to their linear-time equivalent necessitates a reevaluation of the available methods on this type of data. Additionally, two novel, efficient denoising algorithms based on transform coefficient manipulation in the sinogram domain and on an analytic, discrete wavelet filterbank are proposed and subjected to a comparative performance evaluation together with two established denoising methods. To facilitate a thorough comparison, the real-world ERP dataset obtained in the first part of this work is employed alongside synthetic data generated using a phenomenological ERP model evaluated at different signal-to-noise ratios (SNR), with individual gains in multiple outcome metrics being used to objectively assess algorithm performances. Results suggest the proposed denoising algorithms to substantially outperform the state-of-the-art methods in terms of the employed outcome metrics as well as their respective processing times. Furthermore, an efficient stimulus sequence optimization method for use with deconvolution-based ERP acquisition methods is introduced, which achieves consistent noise attenuation within a broad designated frequency range. A novel stimulus presentation paradigm for the fast, interleaved acquisition of auditory brainstem, middle-latency and late responses featuring alternating periods of optimized, high-rate deconvolution sequences and subsequent low-rate stimulation is proposed and investigated in 20 normal hearing subjects. Deconvolved sequence responses containing early and middle-latency ERP components are fused with subsequent late responses using a time-frequency resolved weighted averaging method based on cross-trial regularity, yielding a uniform SNR of the full-range auditory ERP across investigated timescales. Obtained average ERP waveforms exhibit morphologies consistent with both literature values and the reference recordings obtained in the first part of this manuscript, with all prominent waves being visible in the grand average waveforms. The novel stimulation approach cuts acquisition time by a factor of 3.4 while at the same time yielding a substantial gain in the SNR of obtained ERP data. Results suggest the proposed interleaved stimulus presentation and associated postprocessing methodology to be suitable for the fast, reliable extraction of full-range neural correlates of auditory processing in future studies.Diese Arbeit steht im Zusammenhang mit aktuellen Entwicklungen auf dem Gebiet der ereigniskorrelierten Potentiale (EKP) des humanen auditorischen Systems, insbesondere der schnellen, entfaltungsbasierten EKP-Aufzeichnung sowie einzelantwortbasierten Vorverarbeitungs-, Entrauschungs- und nachgelagerten Analysemethoden. Ziel ist die Bereitstellung eines vollständigen Methodensatzes, der eine schnelle, zuverlässige Erfassung der gesamten elektrophysiologischen Aktivität entlang der Hörbahn vom Hirnstamm bis zum Cortex ermöglicht, die als Folge transienter akustischer Stimulation auftritt. Das vorliegende Manuskript gliedert sich in drei aufeinander aufbauende Untersuchungsbereiche : Zunächst wird die generelle Machbarkeit der gleichzeitigen Aufzeichnung von Einzelantworten der auditorischen Hirnstammpotentiale zusammen mit mittelspäten und späten EKP anhand von Referenzmessungen an 15 normalhörenden Probanden demonstriert. Es werden hierzu geeignete Erfassungsparameter (Abtastrate, Bandpassfiltereinstellungen und Interstimulusintervalle) ermittelt, gefolgt von einer Signalanalyse der resultierenden EKP im Hinblick auf deren dominante intrinsische Skalen, um auf dieser Grundlage die Eigenschaften einer optimalen Signaldarstellung mit maximal reduzierter Anzahl an Abtastpunkten zu bestimmen, die durch nichtlineare Neuabtastung auf eine logarithmische Zeitbasis realisiert wird. Hierbei wird ein Kompressionsverhältnis von 16.59 erzielt. Zeit-Skalen-Analysen der uniform und logarithmisch abgetasteten EKP-Einzelantworten zeigen, dass bei der kompressiven Neuabtastung keine relevante Information verloren geht, was durch eine vergleichende Auswertung der resultierenden, gemittelten Wellenformen zusätzlich gestützt wird - alle prominenten Wellen bleiben sichtbar und sind hinsichtlich ihrer charakteristischen Latenzen und Amplituden von der Neuabtastung weitgehend unbeeinflusst. Die uniforme und logarithmische Signalrepräsentation werden hinsichtlich ihrer Anfälligkeit für die üblicherweise bei der EKP-Aufzeichnung auftretenden physiologischen und technischen Störquellen vergleichend untersucht. Obwohl bereits eine Fülle von gut etablierten Ansätzen für die Entrauschung von EKP-Einzelantwortdarstellungen zur Verbesserung der Signalqualität und/oder zur Reduktion der benötigten Erfassungszeiten existiert, erfordern die wesentlich veränderten Störeigenschaften der vorliegenden, logarithmisch abgetasteten Einzelantwortdarstellungen im Gegensatz zu ihrem uniformen Äquivalent eine Neubewertung der verfügbaren Methoden für diese Art von Daten. Darüber hinaus werden zwei neuartige, effiziente Entrauschungsalgorithmen geboten, die auf der Koeffizientenmanipulation einer Sinogramm-Repräsentation bzw. einer analytischen, diskreten Wavelet-Zerlegung der Einzelantworten basieren und gemeinsam mit zwei etablierten Entrauschungsmethoden einer vergleichenden Leistungsbewertung unterzogen werden. Um einen umfassenden Vergleich zu ermöglichen, werden der im ersten Teil dieser Arbeit erhaltene EKP-Messdatensatz sowie synthetischen Daten eingesetzt, die mithilfe eines phänomenologischen EKP-Modells bei verschiedenen Signal-Rausch-Abständen (SRA) erzeugt wurden, wobei die individuellen Anstiege in mehreren Zielmetriken zur objektiven Bewertung der Performanz herangezogen werden. Die erhaltenen Ergebnisse deuten darauf hin, dass die vorgeschlagenen Entrauschungsalgorithmen die etablierten Methoden sowohl in den eingesetzten Zielmetriken als auch mit Blick auf die Laufzeiten deutlich übertreffen. Weiterhin wird ein effizientes Reizsequenzoptimierungsverfahren für den Einsatz mit entfaltungsbasierten EKP-Aufzeichnungsmethoden vorgestellt, das eine konsistente Rauschunterdrückung innerhalb eines breiten Frequenzbands erreicht. Ein neuartiges Stimulus-Präsentationsparadigma für die schnelle, verschachtelte Erfassung auditorischer Hirnstammpotentiale, mittlelspäter und später Antworten durch alternierende Darbietung von optimierten, dichter Stimulussequenzen und nachgelagerter, langsamer Einzelstimulation wird eingeführt und in 20 normalhörenden Probanden evaluiert. Entfaltete Sequenzantworten, die frühe und mittlere EKP enthalten, werden mit den nachfolgenden späten Antworten fusioniert, wobei eine Zeit-Frequenz-aufgelöste, gewichtete Mittelung unter Berücksichtigung von Regularität über Einzelantworten hinweg zum Einsatz kommt. Diese erreicht einheitliche SRA der resultierenden EKP-Signale über alle untersuchten Zeitskalen hinweg. Die erhaltenen, gemittelten EKP-Wellenformen weisen Morphologien auf, die sowohl mit einschlägigen Literaturwerten als auch mit den im ersten Teil dieses Manuskripts erhaltenen Referenzaufnahmen konsistent sind, wobei alle markanten Wellen deutlich in den Gesamtmittelwerten sichtbar sind. Das neuartige Stimulationsparadigma verkürzt die Erfassungszeit um den Faktor 3.4 und vergrößert gleichzeitig den erreichten SRA erheblich. Die Ergebnisse deuten darauf hin, dass die vorgeschlagene verschachtelte Stimuluspräsentation und die nachgelagerte EKP-Verarbeitungsmethodik zur schnellen, zuverlässigen Extraktion neuronaler Korrelate der gesamten auditorischen Verarbeitung im Rahmen zukünftiger Studien geeignet sind.Bundesministerium für Bildung und Forschung | Bimodal Fusion - Eine neurotechnologische Optimierungsarchitektur für integrierte bimodale Hörsysteme | 2016-201

    Neural Correlates of Binaural Interaction Using Aggregate-System Stimulation in Cochlear Implantees

    Get PDF
    The importance of binaural cues in auditory stream formation and sound source differentiation is widely accepted. When treating one ear with a cochlear implant (CI) the peripheral auditory system gets partially replaced and processing delays get added potentially, thus important interaural time encoding gets altered. This is a crucial problem because factors like the interaural time delay between the receiving ears are known to be responsible for facilitating such cues, e.g., sound source localization and separation. However, these effects are not fully understood, leaving a lack of systematic binaural fitting strategies with respect to an optimal binaural fusion. To gain new insights into such alterations, we suggest a novel method of free-field evoked auditory brainstem response (ABR) analysis in CI users. As a result, this method does not bypass the technically induced intrinsic delays of the hearing device while leaving the complete electrode array active, thus the most natural way of stimulation is provided and the comparable testing of real world stimuli gets facilitated. Unfortunately, ABRs acquired in CI users are additionally affected by the prominent artifact caused by their electrical stimulation, which severely distorts the desired neural response, thus challenging their analysis. To circumvent this problem, we further introduce a novel narrowband filtering CI artifact removal technique capable of obtaining neural correlates of ABRs in CI users. Consequently, we were able to compare brainstem-level responses collected of 12 CI users and 12 normal hearing listeners using two different stimuli (i.e., chirp and click) at four different intensities each, what comprises an adaption of the prominent brainstem evoked response audiometry serving as an additional evaluation criterion. We analyzed the responses using the average of 2,000 trials in combination with synchronized regularizations across them and found consistent results in their deflections and latencies, as well as in single trial relationships between both groups. This method provides a novel and unique perspective into the natural CI users’ brainstem-level responses and can be practical in future research regarding binaural interaction and fusion. Furthermore, the binaural interaction component (BIC), i.e., the arithmetical difference between the sum of both monaurally evoked ABRs and the binaurally evoked ABR, has been previously shown to be an objective indicator for binaural interaction. This component is unfortunately known to be rather fragile and as a result, a reliable, objective measure of binaural interaction in CI users does not exist to the present date. It is most likely that implantees would benefit from a reliable analysis of brainstem-level and subsequent higher-level binaural interaction, since this could objectively support fitting strategies with respect to a maximization of interaural integration. Therefore, we introduce a novel method capable of obtaining neural correlates of binaural interaction in bimodal CI users by combining recent advances in the field of fast, deconvolution-based ABR acquisitions with the introduced narrowband filtering technique. The proposed method shows a significant improvement in the magnitude of resulting BICs in 10 bimodal CI users and a control-group of 10 normal hearing subjects when compensating the interaural latency difference caused by the technical devices. In total, both proposed studies objectively demonstrate technical-driven interaural latency mismatches. Thus, they strongly emphasize potential benefits when balancing these interaural delays to improve binaural processing by significant increases in associated neural correlates of successful binaural interaction. These results and also the estimated latency differences should be investigated in larger group sizes to further consolidate the results, but confirm the demand for rather binaural solutions than treating hearing losses in an isolated monaural manner.Zusammenfassung Die Notwendigkeit binauraler Verarbeitungsprozesse in der auditorischen Wahrnehmung ist weitestgehend akzeptiert. Bei der Therapie eines Ohres mit einem Cochlea-Implantat (engl. cochlear implant (CI)) wird das periphere auditorische System teilweise ersetzt und verändert, sodass natürliche, interaurale Zeitauflösungen beeinflusst werden. Dieses Problem ist entscheidend, denn Faktoren wie interaurale Laufzeitunterschiede zwischen den aufnehmenden Ohren sind verantwortlich für die Umsetzung der erwähnten binauralen Verarbeitungsprozesse, z.B. Schallquellenlokalisation und -separation. Allerdings sind diese Effekte nicht ausreichend verstanden, weshalb bis heute binaurale Anpassstrategien mit Rücksicht auf eine optimale Fusionierung fehlen. Um neue Einsichten in solche zeitlichen Verzerrungen zu erhalten, schlagen wir ein neues Verfahren der Freifeld evozierten auditorischen Hirnstammpotentiale (engl. auditory brainstem response (ABR)) in CI-Nutzern vor. Diese Methode beinhaltet explizit technisch-induzierte Laufzeiten verwendeter Hörhilfen, sodass eine natürliche Stimulation unter Verwendung von realitätsnahen Stimuli ermöglicht wird. Unglücklicherweise sind ABRs von CI-Nutzern zusätzlich mit Stimulationsartefakten belastet, wodurch benötigte neurale Antworten weiter verzerrt werden und eine entsprechende Analyse der Signale deutlich erschwert wird. Um dieses Problem zu umgehen, schlagen wir eine neue Artefakt- Reduktionstechnik vor, welche auf spektraler Schmalbandfilterung basiert und somit den Erhalt entsprechender, neuraler ABR Korrelate ermöglicht. Diese Methoden erlaubten die Interpretation neuraler Korrelate auf Hirnstammebene unter Verwendung von zwei verschiedenen Stimuli (Chirps und Klicks) unter vier verschiedenen Lautstärken in 12 CI-Nutzern und 12 normalhörenden Probanden. Die beschriebene Prozedur adaptiert somit die weitläufig bekannte Hirnstammaudiometrie (engl. brainstem evoked response audiometry (BERA)), deren Ergebnisse zur zusätzlichen Evaluation des vorgestellten Verfahrens dienten. Die Untersuchung der aus 2000 Einzelantworten erhaltenen Mittelwerte in Kombination mit der Analyse synchronisierter Regularitäten über den Verlauf der Einzelantworten ergab dabei konsistente Beobachtungen in gefundenen Amplituden, Latenzen sowie in Abhängigkeiten zwischen Einzelantworten in beiden Gruppen. Das vorgestellte Verfahren erlaubt somit auf einzigartige Weise neue und ungesehene Einsichten in natürliche, neurale Antworten auf Hirnstammebene von CI-Nutzern, welche in zukünftigen Studien verwendet werden können, um binaurale Interaktionen und Fusionen weiter untersuchen zu können. Interessanterweise hat sich, die auf ABRs basierende, binaurale Interaktionskomponente (engl. binaural interaction component (BIC)) als objektiver Indikator binauraler Integration etabliert. Diese Komponente (d.h. die arithmetische Differenz zwischen der Summe der monauralen Antworten und der binauralen Antwort) ist leider sehr fragil, wodurch ein sicherer und objektiver Nachweis in CI-Nutzern bis heute nicht existiert. Dabei ist es sehr wahrscheinlich, dass gerade Implantatsträger von einer entsprechenden Analyse auf Hirnstammebene und höherrangigen Ebenen deutlich profitieren würden, da dies objektiv Anpassstrategien mit Rücksicht auf eine bestmögliche binaurale Integration ermöglichen könnte. Deshalb stellen wir ein weiteres, neuartiges Verfahren zum Erhalt von neuralen Korrelaten binauraler Interaktion in bimodal versorgten CI-Trägern vor, welches jüngste Erfolge im Bereich der schnellen, entfalltungsbasierten ABR Akquisition und der bereits vorgestellten Schmalband- filterung zur Reduktion von Stimulationsartefakten kombiniert. Basierend auf diesem Verfahren konnten signifikante Verbesserungen in der BIC-Amplitude in 10 bimodal versorgten Patienten sowie 10 normalhörenden Probanden, basierend auf umgesetzte, interaurale Laufzeitkompensationen technischer Hörhilfen, aufgezeigt werden. Insgesamt demonstrieren beide vorgestellten Studien technisch-induzierte, interaurale Laufzeitunterschiede und betonen demnach sehr deutlich potenzielle Vorteile in assoziierten neuralen Korrelaten binauraler Interaktionen, wenn solche Missverhältnisse zeitlich ausgeglichen werden. Die aufgezeigten Ergebnisse sowie die getätigte Abschätzungen technischer Laufzeiten sollte in größeren Gruppen weiter untersucht werden, um die Aussagekraft weiter zu steigern. Dennoch unterstreichen diese Einsichten das Verlangen nach binauralen Lösungsansätzen in der zukünftigen Hörrehabilitation, statt bisheriger isolierter und monauraler Therapien

    Functional roles of synaptic inhibition in auditory temporal processing

    Get PDF

    Sound processing in the mouse auditory cortex: organization, modulation, and transformation

    Full text link
    The auditory system begins with the cochlea, a frequency analyzer and signal amplifier with exquisite precision. As neural information travels towards higher brain regions, the encoding becomes less faithful to the sound waveform itself and more influenced by non-sensory factors such as top-down attentional modulation, local feedback modulation, and long-term changes caused by experience. At the level of auditory cortex (ACtx), such influences exhibit at multiple scales from single neurons to cortical columns to topographic maps, and are known to be linked with critical processes such as auditory perception, learning, and memory. How the ACtx integrates a wealth of diverse inputs while supporting adaptive and reliable sound representations is an important unsolved question in auditory neuroscience. This dissertation tackles this question using the mouse as an animal model. We begin by describing a detailed functional map of receptive fields within the mouse ACtx. Focusing on the frequency tuning properties, we demonstrated a robust tonotopic organization in the core ACtx fields (A1 and AAF) across cortical layers, neural signal types, and anesthetic states, confirming the columnar organization of basic sound processing in ACtx. We then studied the bottom-up input to ACtx columns by optogenetically activating the inferior colliculus (IC), and observed feedforward neuronal activity in the frequency-matched column, which also induced clear auditory percepts in behaving mice. Next, we used optogenetics to study layer 6 corticothalamic neurons (L6CT) that project heavily to the thalamus and upper layers of ACtx. We found that L6CT activation biases sound perception towards either enhanced detection or discrimination depending on its relative timing with respect to the sound, a process that may support dynamic filtering of auditory information. Finally, we optogenetically isolated cholinergic neurons in the basal forebrain (BF) that project to ACtx and studied their involvement in columnar ACtx plasticity during associative learning. In contrast to previous notions that BF just encodes reward and punishment, we observed clear auditory responses from the cholinergic neurons, which exhibited rapid learning-induced plasticity, suggesting that BF may provide a key instructive signal to drive adaptive plasticity in ACtx

    Behavioral and electrophysiological assessment of children with a specific temporal processing disorder

    Get PDF
    Auditory processing disorders (APDs) have received considerable attention over the past few decades. Much of the attention has focused on the controversy surrounding the operational definition of APD, the heterogeneous nature of APD, and an appropriate test battery for APD assessment. Temporal processing deficits are one characteristic of APD and are the focus of the present investigation. This investigation reports behavioral and early electrophysiological measures in a group of children with specific temporal processing difficulties and an age-matched control group. In an effort to better describe the subjects, two language tests and the SCAN-C were administered. Significant differences were found in the language tests, SCAN-C, and behavioral tests of temporal processing. No significant differences in ABR waveform latency were found between the control and experimental group. Significant amplitude differences were found, albeit small. Binaural interaction was present in both groups. Based on the results of the present well-controlled investigation of children with temporal processing disorders, there is no indication that the auditory brainstem response recording to click stimuli is efficient in providing additional diagnosis of APD

    Complex-tone pitch representations in the human auditory system.

    Get PDF

    Sound processing in the mouse auditory cortex: organization, modulation, and transformation

    Full text link
    The auditory system begins with the cochlea, a frequency analyzer and signal amplifier with exquisite precision. As neural information travels towards higher brain regions, the encoding becomes less faithful to the sound waveform itself and more influenced by non-sensory factors such as top-down attentional modulation, local feedback modulation, and long-term changes caused by experience. At the level of auditory cortex (ACtx), such influences exhibit at multiple scales from single neurons to cortical columns to topographic maps, and are known to be linked with critical processes such as auditory perception, learning, and memory. How the ACtx integrates a wealth of diverse inputs while supporting adaptive and reliable sound representations is an important unsolved question in auditory neuroscience. This dissertation tackles this question using the mouse as an animal model. We begin by describing a detailed functional map of receptive fields within the mouse ACtx. Focusing on the frequency tuning properties, we demonstrated a robust tonotopic organization in the core ACtx fields (A1 and AAF) across cortical layers, neural signal types, and anesthetic states, confirming the columnar organization of basic sound processing in ACtx. We then studied the bottom-up input to ACtx columns by optogenetically activating the inferior colliculus (IC), and observed feedforward neuronal activity in the frequency-matched column, which also induced clear auditory percepts in behaving mice. Next, we used optogenetics to study layer 6 corticothalamic neurons (L6CT) that project heavily to the thalamus and upper layers of ACtx. We found that L6CT activation biases sound perception towards either enhanced detection or discrimination depending on its relative timing with respect to the sound, a process that may support dynamic filtering of auditory information. Finally, we optogenetically isolated cholinergic neurons in the basal forebrain (BF) that project to ACtx and studied their involvement in columnar ACtx plasticity during associative learning. In contrast to previous notions that BF just encodes reward and punishment, we observed clear auditory responses from the cholinergic neurons, which exhibited rapid learning-induced plasticity, suggesting that BF may provide a key instructive signal to drive adaptive plasticity in ACtx

    Physiology, Psychoacoustics and Cognition in Normal and Impaired Hearing

    Get PDF

    Physiology, Psychoacoustics and Cognition in Normal and Impaired Hearing

    Get PDF
    ​The International Symposium on Hearing is a prestigious, triennial gathering where world-class scientists present and discuss the most recent advances in the field of human and animal hearing research. The 2015 edition will particularly focus on integrative approaches linking physiological, psychophysical and cognitive aspects of normal and impaired hearing. Like previous editions, the proceedings will contain about 50 chapters ranging from basic to applied research, and of interest to neuroscientists, psychologists, audiologists, engineers, otolaryngologists, and artificial intelligence researchers.

    Physiology, Psychoacoustics and Cognition in Normal and Impaired Hearing

    Get PDF
    corecore