32 research outputs found

    Grid-tie Quasi Z-Source Inverter-Based Static Synchronous Compensator

    Get PDF
    This research work proposes intensive study and mathematical modelling analysis of transformer-less quasi Z-source inverter (qZSI) based static synchronous compensator (STATCOM) system. In this work, a single-phase qZSI is acted as a STATCOM system to compensate the grid reactive power at the point of coupling under different loading conditions. A new controller-based lead compensator is developed to achieve fast DC-link voltage balance across each qZS network. Simulation studies are conducted to evaluate the controller’s performance

    Isolated Single-stage Power Electronic Building Blocks Using Medium Voltage Series-stacked Wide-bandgap Switches

    Get PDF
    The demand for efficient power conversion systems that can process the energy at high power and voltage levels is increasing every day. These systems are to be used in microgrid applications. Wide-bandgap semiconductor devices (i.e. Silicon Carbide (SiC) and Gallium Nitride (GaN) devices) are very promising candidates due to their lower conduction and switching losses compared to the state-of-the-art Silicon (Si) devices. The main challenge for these devices is that their breakdown voltages are relatively lower compared to their Si counterpart. In addition, the high frequency operation of the wide-bandgap devices are impeded in many cases by the magnetic core losses of the magnetic coupling components (i.e. coupled inductors and/or high frequency transformers) utilized in the power converter circuit. Six new dc-dc converter topologies are propose. The converters have reduced voltage stresses on the switches. Three of them are unidirectional step-up converters with universal input voltage which make them excellent candidates for photovoltaic and fuel cell applications. The other three converters are bidirectional dc-dc converters with wide voltage conversion ratios. These converters are very good candidates for the applications that require bidirectional power flow capability. In addition, the wide voltage conversion ratios of these converters can be utilized for applications such as energy storage systems with wide voltage swings

    Soft-Switched Step-Up Medium Voltage Power Converters

    Get PDF
    With a ten-year average annual growth rate of 19 percent, wind energy has been the largest source of new electricity generation for the past decade. Typically, an offshore wind farm has a medium voltage ac (MVac) grid that collects power from individual wind turbines. Since the output voltage of a wind turbine is too low (i.e., typically 400 690 V) to be connected to the MVac grid (i.e., 20 40 kV), a heavy line-frequency transformer is used to step up the individual turbines output voltage to the MV level. To eliminate the need for bulky MVac transformers, researchers are gravitating towards the idea of replacing the MVac grid with a medium voltage dc (MVdc) grid, so that MV step-up transformers are replaced by MV step-up power electronic converters that operate at the medium frequency range with much lower size and weight. This dissertation proposes a class of modular step-up transformerless MV SiC-based power converters with soft-switching capability for wind energy conversion systems with MVdc grid. This dissertation consists of two parts: the first part focuses on the development of two novel groups of step-up isolated dc-dc MV converters that utilize various step-up resonant circuits and soft-switched high voltage gain rectifier modules. An integrated magnetic design approach is also presented to combine several magnetic components together in the modular high voltage gain rectifiers. The second part of this dissertation focuses on the development of several three-phase ac-dc step-up converters with integrated active power factor correction. In particular, a bridgeless input ac-dc rectifier is also proposed to combine with the devised step-up transformerless dc-dc converters (presented in the first part) to form the three-phase soft-switched ac-dc step-up voltage conversion unit. In each of the presented modular step-up converter configurations, variable frequency control is used to regulate the output dc voltage of each converter module. The operating principles and characteristics of each presented converter are provided in detail. The feasibility and performance of all the power converter concepts presented in this dissertation are verified through simulation results on megawatts (MW) design examples, as well as experimental results on SiC-based laboratory-scale proof-of-concept prototypes

    Soft-Switched Step-Up Medium Voltage Power Converters

    Get PDF
    With a ten-year average annual growth rate of 19 percent, wind energy has been the largest source of new electricity generation for the past decade. Typically, an offshore wind farm has a medium voltage ac (MVac) grid that collects power from individual wind turbines. Since the output voltage of a wind turbine is too low (i.e., typically 400 690 V) to be connected to the MVac grid (i.e., 20 40 kV), a heavy line-frequency transformer is used to step up the individual turbines output voltage to the MV level. To eliminate the need for bulky MVac transformers, researchers are gravitating towards the idea of replacing the MVac grid with a medium voltage dc (MVdc) grid, so that MV step-up transformers are replaced by MV step-up power electronic converters that operate at the medium frequency range with much lower size and weight. This dissertation proposes a class of modular step-up transformerless MV SiC-based power converters with soft-switching capability for wind energy conversion systems with MVdc grid. This dissertation consists of two parts: the first part focuses on the development of two novel groups of step-up isolated dc-dc MV converters that utilize various step-up resonant circuits and soft-switched high voltage gain rectifier modules. An integrated magnetic design approach is also presented to combine several magnetic components together in the modular high voltage gain rectifiers. The second part of this dissertation focuses on the development of several three-phase ac-dc step-up converters with integrated active power factor correction. In particular, a bridgeless input ac-dc rectifier is also proposed to combine with the devised step-up transformerless dc-dc converters (presented in the first part) to form the three-phase soft-switched ac-dc step-up voltage conversion unit. In each of the presented modular step-up converter configurations, variable frequency control is used to regulate the output dc voltage of each converter module. The operating principles and characteristics of each presented converter are provided in detail. The feasibility and performance of all the power converter concepts presented in this dissertation are verified through simulation results on megawatts (MW) design examples, as well as experimental results on SiC-based laboratory-scale proof-of-concept prototypes

    Soft-Switched Step-Up Medium Voltage Power Converters

    Get PDF
    With a ten-year average annual growth rate of 19 percent, wind energy has been the largest source of new electricity generation for the past decade. Typically, an offshore wind farm has a medium voltage ac (MVac) grid that collects power from individual wind turbines. Since the output voltage of a wind turbine is too low (i.e., typically 400 690 V) to be connected to the MVac grid (i.e., 20 40 kV), a heavy line-frequency transformer is used to step up the individual turbines output voltage to the MV level. To eliminate the need for bulky MVac transformers, researchers are gravitating towards the idea of replacing the MVac grid with a medium voltage dc (MVdc) grid, so that MV step-up transformers are replaced by MV step-up power electronic converters that operate at the medium frequency range with much lower size and weight. This dissertation proposes a class of modular step-up transformerless MV SiC-based power converters with soft-switching capability for wind energy conversion systems with MVdc grid. This dissertation consists of two parts: the first part focuses on the development of two novel groups of step-up isolated dc-dc MV converters that utilize various step-up resonant circuits and soft-switched high voltage gain rectifier modules. An integrated magnetic design approach is also presented to combine several magnetic components together in the modular high voltage gain rectifiers. The second part of this dissertation focuses on the development of several three-phase ac-dc step-up converters with integrated active power factor correction. In particular, a bridgeless input ac-dc rectifier is also proposed to combine with the devised step-up transformerless dc-dc converters (presented in the first part) to form the three-phase soft-switched ac-dc step-up voltage conversion unit. In each of the presented modular step-up converter configurations, variable frequency control is used to regulate the output dc voltage of each converter module. The operating principles and characteristics of each presented converter are provided in detail. The feasibility and performance of all the power converter concepts presented in this dissertation are verified through simulation results on megawatts (MW) design examples, as well as experimental results on SiC-based laboratory-scale proof-of-concept prototypes

    Optimization And Design Of Photovoltaic Micro-inverter

    Get PDF
    To relieve energy shortage and environmental pollution issues, renewable energy, especially PV energy has developed rapidly in the last decade. The micro-inverter systems, with advantages in dedicated PV power harvest, flexible system size, simple installation, and enhanced safety characteristics are the future development trend of the PV power generation systems. The double-stage structure which can realize high efficiency with nice regulated sinusoidal waveforms is the mainstream for the micro-inverter. This thesis studied a double stage micro-inverter system. Considering the intermittent nature of PV power, a PFC was analyzed to provide additional electrical power to the system. When the solar power is less than the load required, PFC can drag power from the utility grid. In the double stage micro-inverter, the DC/DC stage was realized by a LLC converter, which could realize soft switching automatically under frequency modulation. However it has a complicated relationship between voltage gain and load. Thus conventional variable step P&O MPPT techniques for PWM converter were no longer suitable for the LLC converter. To solve this problem, a novel MPPT was proposed to track MPP efficiently. Simulation and experimental results verified the effectiveness of the proposed MPPT. The DC/AC stage of the micro-inverter was realized by a BCM inverter. With duty cycle and frequency modulation, ZVS was achieved through controlling the inductor current bi-directional in every switching cycle. This technique required no additional resonant components and could be employed for low power applications on conventional full-bridge and half-bridge inverter topologies. Three different current mode control schemes were derived from the basic theory of the proposed technique. They were referred to as Boundary Current Mode (BCM), Variable Hysteresis Current Mode (VHCM), and Constant Hysteresis Current Mode (CHCM) individually in this paper with their advantages and disadvantages analyzed in detail. Simulation and experimental iv results demonstrated the feasibilities of the proposed soft-switching technique with the digital control schemes. The PFC converter was applied by a single stage Biflyback topology, which combined the advantages of single stage PFC and flyback topology together, with further advantages in low intermediate bus voltage and current stresses. A digital controller without current sampling requirement was proposed based on the specific topology. To reduce the voltage spike caused by the leakage inductor, a novel snubber cell combining soft switching technique with snubber technique together was proposed. Simulation and experimental waveforms illustrated the same as characteristics as the theoretical analysis. In summary, the dissertation analyzed each power stage of photovoltaic micro-inverter system from efficiency and effectiveness optimization perspectives. Moreover their advantages were compared carefully with existed topologies and control techniques. Simulation and experiment results were provided to support the theoretical analysis

    Topology Studies and Control of Microinverters for Photovoltaic Applications

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Design and Analysis of an On-Board Electric Vehicle Charger for Wide Battery Voltage Range

    Get PDF
    The scarcity of fossil fuel and the increased pollution leads the use of Electric Vehicles (EV) and Hybrid Electric Vehicles (HEV) instead of conventional Internal Combustion (IC) engine vehicles. An Electric Vehicle requires an on-board charger (OBC) to charge the propulsion battery. The objective of the project work is to design a multifunctional on-board charger that can charge the propulsion battery when the Electric Vehicle (EV) connected to the grid. In this case, the OBC plays an AC-DC converter. The surplus energy of the propulsion battery can be supplied to the grid, in this case, the OBC plays as an inverter. The auxiliary battery can be charged via the propulsion battery when PEV is in driving stage. In this case, the OBC plays like a low voltage DC-DC converter (LDC). An OBC is designed with Boost PFC converter at the first stage to obtain unity power factor with low Total Harmonic Distortion (THD) and a Bi-directional DC-DC converter to regulate the charging voltage and current of the propulsion battery. The battery is a Li-Ion battery with a nominal voltage of 360 V and can be charged from depleted voltage of 320 V to a fully charged condition of 420 V. The function of the second stage DC-DC converter is to charge the battery in a Constant Current and Constant Voltage manner. While in driving condition of the battery the OBC operates as an LDC to charge the Auxiliary battery of the vehicle whose voltage is around 12 V. In LDC operation the Bi-Directional DC-DC converter works in Vehicle to Grid (V2G) mode. A 1KW prototype of multifunctional OBC is designed and simulated in MATLAB/Simulink. The power factor obtained at full load is 0.999 with a THD of 3.65 %. The Battery is charged in A CC mode from 320 V to 420 V with a constant battery current of 2.38 A and the charging is switched into CV mode until the battery current falls below 0.24 A. An LDC is designed to charge a 12 V auxiliary battery with CV mode from the high voltage propulsion batter

    Implementation of Natural Switching Surface Control for a Flyback Converter

    Get PDF
    The flyback converter is an extremely common topology used for DC/DC power conversion. Widely used methods to control the flyback converter include voltage mode and current mode controllers. More recently, sliding mode control has been developed for the flyback converter. While these control methods may be considered adequate, the Natural Switching Surface (NSS) sliding mode control method detailed in this thesis presents a more robust controller. NSS control eliminates the effects presented from variations in components and design as well as minimizes the effects from external disturbances. This thesis steps through the complete design and implementation process of a NSS controller for a 100W flyback converter. The fundamental operational principals of the flyback converter will be described first. A detailed derivation of the NSS control for a flyback converter will follow. Simulations of the derived controller will be evaluated in MATLAB/Simulink©. The component level selection and design is detailed. Finally, the completed flyback with the NSS controller is fully tested in a laboratory setting and experimental results are analyzed
    corecore