19,427 research outputs found

    Analysis and design of physical-layer network coding for relay networks

    Full text link
    Physical-layer network coding (PNC) is a technique to make use of interference in wireless transmissions to boost the system throughput. In a PNC employed relay network, the relay node directly recovers and transmits a linear combination of its received messages in the physical layer. It has been shown that PNC can achieve near information-capacity rates. PNC is a new information exchange scheme introduced in wireless transmission. In practice, transmitters and receivers need to be designed and optimized, to achieve fast and reliable information exchange. Thus, we would like to ask: How to design the PNC schemes to achieve fast and reliable information exchange? In this thesis, we address this question from the following works: Firstly, we studied channel-uncoded PNC in two-way relay fading channels with QPSK modulation. The computation error probability for computing network coded messages at the relay is derived. We then optimized the network coding functions at the relay to improve the error rate performance. We then worked on channel coded PNC. The codes we studied include classical binary code, modern codes, and lattice codes. We analyzed the distance spectra of channel-coded PNC schemes with classical binary codes, to derive upper bounds for error rates of computing network coded messages at the relay. We designed and optimized irregular repeat-accumulate coded PNC. We modified the conventional extrinsic information transfer chart in the optimization process to suit the superimposed signal received at the relay. We analyzed and designed Eisenstein integer based lattice coded PNC in multi-way relay fading channels, to derive error rate performance bounds of computing network coded messages. Finally we extended our work to multi-way relay channels. We proposed a opportunistic transmission scheme for a pair-wise transmission PNC in a single-input single-output multi-way relay channel, to improve the sum-rate at the relay. The error performance of computing network coded messages at the relay is also improved. We optimized the uplink/downlink channel usage for multi-input multi-output multi-way relay channels with PNC to maximize the degrees of freedom capacity. We also showed that the system sum-rate can be further improved by a proposed iterative optimization algorithm

    Reliable Physical Layer Network Coding

    Full text link
    When two or more users in a wireless network transmit simultaneously, their electromagnetic signals are linearly superimposed on the channel. As a result, a receiver that is interested in one of these signals sees the others as unwanted interference. This property of the wireless medium is typically viewed as a hindrance to reliable communication over a network. However, using a recently developed coding strategy, interference can in fact be harnessed for network coding. In a wired network, (linear) network coding refers to each intermediate node taking its received packets, computing a linear combination over a finite field, and forwarding the outcome towards the destinations. Then, given an appropriate set of linear combinations, a destination can solve for its desired packets. For certain topologies, this strategy can attain significantly higher throughputs over routing-based strategies. Reliable physical layer network coding takes this idea one step further: using judiciously chosen linear error-correcting codes, intermediate nodes in a wireless network can directly recover linear combinations of the packets from the observed noisy superpositions of transmitted signals. Starting with some simple examples, this survey explores the core ideas behind this new technique and the possibilities it offers for communication over interference-limited wireless networks.Comment: 19 pages, 14 figures, survey paper to appear in Proceedings of the IEE

    Principles of Physical Layer Security in Multiuser Wireless Networks: A Survey

    Full text link
    This paper provides a comprehensive review of the domain of physical layer security in multiuser wireless networks. The essential premise of physical-layer security is to enable the exchange of confidential messages over a wireless medium in the presence of unauthorized eavesdroppers without relying on higher-layer encryption. This can be achieved primarily in two ways: without the need for a secret key by intelligently designing transmit coding strategies, or by exploiting the wireless communication medium to develop secret keys over public channels. The survey begins with an overview of the foundations dating back to the pioneering work of Shannon and Wyner on information-theoretic security. We then describe the evolution of secure transmission strategies from point-to-point channels to multiple-antenna systems, followed by generalizations to multiuser broadcast, multiple-access, interference, and relay networks. Secret-key generation and establishment protocols based on physical layer mechanisms are subsequently covered. Approaches for secrecy based on channel coding design are then examined, along with a description of inter-disciplinary approaches based on game theory and stochastic geometry. The associated problem of physical-layer message authentication is also introduced briefly. The survey concludes with observations on potential research directions in this area.Comment: 23 pages, 10 figures, 303 refs. arXiv admin note: text overlap with arXiv:1303.1609 by other authors. IEEE Communications Surveys and Tutorials, 201

    A Survey of Physical Layer Security Techniques for 5G Wireless Networks and Challenges Ahead

    Get PDF
    Physical layer security which safeguards data confidentiality based on the information-theoretic approaches has received significant research interest recently. The key idea behind physical layer security is to utilize the intrinsic randomness of the transmission channel to guarantee the security in physical layer. The evolution towards 5G wireless communications poses new challenges for physical layer security research. This paper provides a latest survey of the physical layer security research on various promising 5G technologies, including physical layer security coding, massive multiple-input multiple-output, millimeter wave communications, heterogeneous networks, non-orthogonal multiple access, full duplex technology, etc. Technical challenges which remain unresolved at the time of writing are summarized and the future trends of physical layer security in 5G and beyond are discussed.Comment: To appear in IEEE Journal on Selected Areas in Communication

    Queue-Architecture and Stability Analysis in Cooperative Relay Networks

    Full text link
    An abstraction of the physical layer coding using bit pipes that are coupled through data-rates is insufficient to capture notions such as node cooperation in cooperative relay networks. Consequently, network-stability analyses based on such abstractions are valid for non-cooperative schemes alone and meaningless for cooperative schemes. Motivated from this, this paper develops a framework that brings the information-theoretic coding scheme together with network-stability analysis. This framework does not constrain the system to any particular achievable scheme, i.e., the relays can use any cooperative coding strategy of its choice, be it amplify/compress/quantize or any alter-and-forward scheme. The paper focuses on the scenario when coherence duration is of the same order of the packet/codeword duration, the channel distribution is unknown and the fading state is only known causally. The main contributions of this paper are two-fold: first, it develops a low-complexity queue-architecture to enable stable operation of cooperative relay networks, and, second, it establishes the throughput optimality of a simple network algorithm that utilizes this queue-architecture.Comment: 16 pages, 1 figur

    Diversity analysis, code design, and tight error rate lower bound for binary joint network-channel coding

    Get PDF
    Joint network-channel codes (JNCC) can improve the performance of communication in wireless networks, by combining, at the physical layer, the channel codes and the network code as an overall error-correcting code. JNCC is increasingly proposed as an alternative to a standard layered construction, such as the OSI-model. The main performance metrics for JNCCs are scalability to larger networks and error rate. The diversity order is one of the most important parameters determining the error rate. The literature on JNCC is growing, but a rigorous diversity analysis is lacking, mainly because of the many degrees of freedom in wireless networks, which makes it very hard to prove general statements on the diversity order. In this article, we consider a network with slowly varying fading point-to-point links, where all sources also act as relay and additional non-source relays may be present. We propose a general structure for JNCCs to be applied in such network. In the relay phase, each relay transmits a linear transform of a set of source codewords. Our main contributions are the proposition of an upper and lower bound on the diversity order, a scalable code design and a new lower bound on the word error rate to assess the performance of the network code. The lower bound on the diversity order is only valid for JNCCs where the relays transform only two source codewords. We then validate this analysis with an example which compares the JNCC performance to that of a standard layered construction. Our numerical results suggest that as networks grow, it is difficult to perform significantly better than a standard layered construction, both on a fundamental level, expressed by the outage probability, as on a practical level, expressed by the word error rate
    • …
    corecore