63 research outputs found

    Low Voltage Regulator Modules and Single Stage Front-end Converters

    Get PDF
    Evolution in microprocessor technology poses new challenges for supplying power to these devices. To meet demands for faster and more efficient data processing, modem microprocessors are being designed with lower voltage implementations. More devices will be packed on a single processor chip and the processors will operate at higher frequencies, exceeding 1GHz. New high-performance microprocessors may require from 40 to 80 watts of power for the CPU alone. Load current must be supplied with up to 30A/µs slew rate while keeping the output voltage within tight regulation and response time tolerances. Therefore, special power supplies and Voltage Regulator Modules (VRMs) are needed to provide lower voltage with higher current and fast response. In the part one (chapter 2,3,4) of this dissertation, several low-voltage high-current VRM technologies are proposed for future generation microprocessors and ICs. The developed VRMs with these new technologies have advantages over conventional ones in terms of efficiency, transient response and cost. In most cases, the VRMs draw currents from DC bus for which front-end converters are used as a DC source. As the use of AC/DC frond-end converters continues to increase, more distorted mains current is drawn from the line, resulting in lower power factor and high total harmonic distortion. As a branch of active Power factor correction (PFC) techniques, the single-stage technique receives particular attention because of its low cost implementation. Moreover, with continuously demands for even higher power density, switching mode power supply operating at high-frequency is required because at high switching frequency, the size and weight of circuit components can be remarkably reduced. To boost the switching frequency, the soft-switching technique was introduced to alleviate the switching losses. The part two (chapter 5,6) of the dissertation presents several topologies for this front-end application. The design considerations, simulation results and experimental verification are discussed

    A New Single-Phase Single-Stage AC-DC Stacked Flyback Converter With Active Clamp ZVS

    Get PDF
    Single-stage AC-DC converters integrate an AC-DC front-end converter with a DC-DC back-end converter. Compared with conventional two-stage AC-DC converters, single-stage AC-DC converters use less components and only one controller, which is used to regulate the output voltage. As a result, the cost, size and complexity of AC-DC converters can be reduced, but single-stage converters do not perform as well as two-stage converters, and most have drawbacks that are related to the fact that the DC bus voltage is not controlled an can become excessive. A new single-phase single-stage AC-DC converter that uses stacked flyback converters is proposed in this thesis. The proposed converter consists of two low power flyback converters stacked on top of each other and an active clamp that helps the main switches operate with ZVS. The stacked structure helps reduce the voltage stresses typical fund in many single-stage converters. In the thesis, the operation of the converter is explained, the steady-state characteristics of the converter are determined and its design is discussed. The feasibility of the new converter is confirmed with experimental results obtained from a 100VAC~220VAC worldwide input, 48V output, 100kHz switching frequency and 200 W output power prototype converter

    Survey on Photo-Voltaic Powered Interleaved Converter System

    Get PDF
    Renewable energy is the best solution to meet the growing demand for energy in the country. The solar energy is considered as the most promising energy by the researchers due to its abundant availability, eco-friendly nature, long lasting nature, wide range of application and above all it is a maintenance free system. The energy absorbed by the earth can satisfy 15000 times of today’s total energy demand and its hundred times more than that our conventional energy like coal and other fossil fuels. Though, there are overwhelming advantages in solar energy, It has few drawbacks as well such as its low conversion ratio, inconsistent supply of energy due to variation in the sun light, less efficiency due to ripples in the converter, time dependent and, above all, high capitation cost. These aforementioned flaws have been addressed by the researchers in order to extract maximum energy and attain hundred percentage benefits of this heavenly resource. So, this chapter presents a comprehensive investigation based on photo voltaic (PV) system requirements with the following constraints such as system efficiency, system gain, dynamic response, switching losses are investigated. The overview exhibits and identifies the requirements of a best PV power generation system

    A Comprehensive Review on Recent Developments of LED Drivers

    Get PDF
    Background: In these recent years, LED lighting has been widely implemented for household and industrial applications. By implementing the correct topology, the performance of a LED driver can be improved in terms of efficiency, power factor, lifespan, size and cost of development. Objective: This paper aims to provide a comprehensive review on the latest trends of LED driver design to serve as a useful guide for design engineers and researchers. Result: Latest research journals and conference proceedings have been reviewed. Conclusion: There are suitable converter topologies for LED drivers of varied power levels, with the flyback converter being the most suitable for applications of less than 100W. When designing the LED driver, considerations must be made on the power factor, efficiency, dimming capability, and lifespan

    High power factor modular polyphase AC/DC converters with galvanic isolation based on Resistor Emulators

    Get PDF
    This work has been supported by the Spanish Government under Project MINECO-13-DPI2013-47176-C2-2-R and the Principality of Asturias under the grants “Severo Ochoa” BP14-140 and BP14-85 and by the Project FC-15-GRUPIN14-143 and by European Regional Development Fund (ERDF) grants.This paper deals with a modular, isolated-output, polyphase, AC/DC converter based on the use of Resistor Emulators (REs). A RE is a DC/DC converter that behaves as a resistor at its input port. The value of this resistor (input impedance) is controlled by the converter duty cycle. In the proposed topology, all the REs are controlled to have the same input impedance, whose value is determined by the outputvoltage feedback loop. Also the power processed by each RE is the same. As a consequence, the total power is distributed (and also the power losses), thus allowing us to build a modular system. Moreover, the behavior of these DC/DC converters as REs also allows their connection in series and/or in parallel with perfect sharing of voltage (when connected in series) and current (when connected in parallel). This fact makes possible to extend the proposed solution to high power applications

    DC/DC Converters for Electric Vehicles

    Get PDF
    International audienceThe large number of automobiles in use around the world has caused and continues to cause serious problems of environment and human life. Air pollution, global warming, and the rapid depletion of the earth’s petroleum resources are now serious problems. Electric Vehicles (EVs), Hybrid Electric Vehicles (HEVs) and Fuel Cell Electric Vehicles (FCEVs) have been typically proposed to replace conventional vehicles in the near future. Most electric and hybrid electric configurations use two energy storage devices, one with high energy storage capability, called the “main energy system” (MES), and the other with high power capability and reversibility, called the “rechargeable energy storage system” (RESS). MES provides extended driving range, and RESS provides good acceleration and regenerative braking. Energy storage or supply devices vary their output voltage with load or state of charge and the high voltage of the DC-link create major challenges for vehicle designers when integrating energy storage / supply devices with a traction drive. DC-DC converters can be used to interface the elements in the electric power train by boosting or chopping the voltage levels. Due to the automotive constraints, the power converter structure has to be reliable, lightweight, small volume, with high efficiency, low electromagnetic interference and low current/voltage ripple. Thus, in this chapter, a comparative study on three DC/DC converters topologies (Conventional step-up dc-dc converter, interleaved 4-channels step-up dc-dc converter with independent inductors and Full-Bridge step-up dc-dc converter) is carried out. The modeling and the control of each topology are presented. Simulations of 30KW DC/DC converter are carried out for each topology. This study takes into account the weight, volume, current and voltage ripples, Electromagnetic Interference (EMI) and the efficiency of each converter topology

    Review on State-of-the-Art Unidirectional Non-Isolated Power Factor Correction Converters for Short-/Long-Distance Electric Vehicles

    Get PDF
    Electrification of the transportation sector has originated a worldwide demand towards green-based refueling infrastructure modernization. Global researches and efforts have been pondered to promote optimal Electric Vehicle (EV) charging stations. The EV power electronic systems can be classified into three main divisions: power charging station configuration (e.g., Level 1 (i.e., slow-speed charger), Level 2 (i.e., fast-speed charger), and Level 3 (i.e., ultra-fast speed charger)), the electric drive system, and the auxiliary EV loads. This paper emphasizes the recent development in Power Factor Correction (PFC) converters in the on-board charger system for short-distance EVs (e.g., e-bikes, e-trikes, e-rickshaw, and golf carts) and long-distance EVs (passenger e-cars, e-trucks, and e-buses). The EV battery voltage mainly ranges between 36 V and 900 V based on the EV application. The on-board battery charger consists of either a single-stage converter (a PFC converter that meets the demands of both the supply-side and the battery-side) or a two-stage converter (a PFC converter that meets the supply-side requirements and a DC-DC converter that meets the battery-side requirements). This paper focuses on the single-phase unidirectional non-isolated PFC converters for on-board battery chargers (i.e., Level 1 and Level 2 charging infrastructure). A comprehensive classification is provided for the PFC converters with two main categories: (1) the fundamental PFC topologies (i.e., Buck, Boost, Buck-Boost, SEPIC, C k, and Zeta converters) and (2) the modified PFC topologies (i.e., improved power quality PFC converters derived from the fundamental topologies). This paper provides a review of up-to-date publications for PFC converters in short-/long-distance EV applications.Qatar National Research FundScopu
    • …
    corecore