3,070 research outputs found

    Distance-Sensitive Planar Point Location

    Get PDF
    Let S\mathcal{S} be a connected planar polygonal subdivision with nn edges that we want to preprocess for point-location queries, and where we are given the probability γi\gamma_i that the query point lies in a polygon PiP_i of S\mathcal{S}. We show how to preprocess S\mathcal{S} such that the query time for a point~pPip\in P_i depends on~γi\gamma_i and, in addition, on the distance from pp to the boundary of~PiP_i---the further away from the boundary, the faster the query. More precisely, we show that a point-location query can be answered in time O(min(logn,1+logarea(Pi)γiΔp2))O\left(\min \left(\log n, 1 + \log \frac{\mathrm{area}(P_i)}{\gamma_i \Delta_{p}^2}\right)\right), where Δp\Delta_{p} is the shortest Euclidean distance of the query point~pp to the boundary of PiP_i. Our structure uses O(n)O(n) space and O(nlogn)O(n \log n) preprocessing time. It is based on a decomposition of the regions of S\mathcal{S} into convex quadrilaterals and triangles with the following property: for any point pPip\in P_i, the quadrilateral or triangle containing~pp has area Ω(Δp2)\Omega(\Delta_{p}^2). For the special case where S\mathcal{S} is a subdivision of the unit square and γi=area(Pi)\gamma_i=\mathrm{area}(P_i), we present a simpler solution that achieves a query time of O(min(logn,log1Δp2))O\left(\min \left(\log n, \log \frac{1}{\Delta_{p}^2}\right)\right). The latter solution can be extended to convex subdivisions in three dimensions

    The projector algorithm: a simple parallel algorithm for computing Voronoi diagrams and Delaunay graphs

    Full text link
    The Voronoi diagram is a certain geometric data structure which has numerous applications in various scientific and technological fields. The theory of algorithms for computing 2D Euclidean Voronoi diagrams of point sites is rich and useful, with several different and important algorithms. However, this theory has been quite steady during the last few decades in the sense that no essentially new algorithms have entered the game. In addition, most of the known algorithms are serial in nature and hence cast inherent difficulties on the possibility to compute the diagram in parallel. In this paper we present the projector algorithm: a new and simple algorithm which enables the (combinatorial) computation of 2D Voronoi diagrams. The algorithm is significantly different from previous ones and some of the involved concepts in it are in the spirit of linear programming and optics. Parallel implementation is naturally supported since each Voronoi cell can be computed independently of the other cells. A new combinatorial structure for representing the cells (and any convex polytope) is described along the way and the computation of the induced Delaunay graph is obtained almost automatically.Comment: This is a major revision; re-organization and better presentation of some parts; correction of several inaccuracies; improvement of some proofs and figures; added references; modification of the title; the paper is long but more than half of it is composed of proofs and references: it is sufficient to look at pages 5, 7--11 in order to understand the algorith

    On k-Convex Polygons

    Get PDF
    We introduce a notion of kk-convexity and explore polygons in the plane that have this property. Polygons which are \mbox{kk-convex} can be triangulated with fast yet simple algorithms. However, recognizing them in general is a 3SUM-hard problem. We give a characterization of \mbox{22-convex} polygons, a particularly interesting class, and show how to recognize them in \mbox{O(nlogn)O(n \log n)} time. A description of their shape is given as well, which leads to Erd\H{o}s-Szekeres type results regarding subconfigurations of their vertex sets. Finally, we introduce the concept of generalized geometric permutations, and show that their number can be exponential in the number of \mbox{22-convex} objects considered.Comment: 23 pages, 19 figure

    Witness (Delaunay) Graphs

    Get PDF
    Proximity graphs are used in several areas in which a neighborliness relationship for input data sets is a useful tool in their analysis, and have also received substantial attention from the graph drawing community, as they are a natural way of implicitly representing graphs. However, as a tool for graph representation, proximity graphs have some limitations that may be overcome with suitable generalizations. We introduce a generalization, witness graphs, that encompasses both the goal of more power and flexibility for graph drawing issues and a wider spectrum for neighborhood analysis. We study in detail two concrete examples, both related to Delaunay graphs, and consider as well some problems on stabbing geometric objects and point set discrimination, that can be naturally described in terms of witness graphs.Comment: 27 pages. JCCGG 200
    corecore