1,579 research outputs found

    Classifying motor imagery in presence of speech

    Get PDF
    In the near future, brain-computer interface (BCI) applications for non-disabled users will require multimodal interaction and tolerance to dynamic environment. However, this conflicts with the highly sensitive recording techniques used for BCIs, such as electroencephalography (EEG). Advanced machine learning and signal processing techniques are required to decorrelate desired brain signals from the rest. This paper proposes a signal processing pipeline and two classification methods suitable for multiclass EEG analysis. The methods were tested in an experiment on separating left/right hand imagery in presence/absence of speech. The analyses showed that the presence of speech during motor imagery did not affect the classification accuracy significantly and regardless of the presence of speech, the proposed methods were able to separate left and right hand imagery with an accuracy of 60%. The best overall accuracy achieved for the 5-class separation of all the tasks was 47% and both proposed methods performed equally well. In addition, the analysis of event-related spectral power changes revealed characteristics related to motor imagery and speech

    Discriminative Tandem Features for HMM-based EEG Classification

    Get PDF
    Abstract—We investigate the use of discriminative feature extractors in tandem configuration with generative EEG classification system. Existing studies on dynamic EEG classification typically use hidden Markov models (HMMs) which lack discriminative capability. In this paper, a linear and a non-linear classifier are discriminatively trained to produce complementary input features to the conventional HMM system. Two sets of tandem features are derived from linear discriminant analysis (LDA) projection output and multilayer perceptron (MLP) class-posterior probability, before appended to the standard autoregressive (AR) features. Evaluation on a two-class motor-imagery classification task shows that both the proposed tandem features yield consistent gains over the AR baseline, resulting in significant relative improvement of 6.2% and 11.2 % for the LDA and MLP features respectively. We also explore portability of these features across different subjects. Index Terms- Artificial neural network-hidden Markov models, EEG classification, brain-computer-interface (BCI)

    A new paradigm for BCI research

    Get PDF
    A new control paradigm for Brain Computer Interfaces (BCIs) is proposed. BCIs provide a means of communication direct from the brain to a computer that allows individuals with motor disabilities an additional channel of communication and control of their external environment. Traditional BCI control paradigms use motor imagery, frequency rhythm modification or the Event Related Potential (ERP) as a means of extracting a control signal. A new control paradigm for BCIs based on speech imagery is initially proposed. Further to this a unique system for identifying correlations between components of the EEG and target events is proposed and introduced

    Brain-Switches for Asynchronous Brain−Computer Interfaces: A Systematic Review

    Get PDF
    A brain–computer interface (BCI) has been extensively studied to develop a novel communication system for disabled people using their brain activities. An asynchronous BCI system is more realistic and practical than a synchronous BCI system, in that, BCI commands can be generated whenever the user wants. However, the relatively low performance of an asynchronous BCI system is problematic because redundant BCI commands are required to correct false-positive operations. To significantly reduce the number of false-positive operations of an asynchronous BCI system, a two-step approach has been proposed using a brain-switch that first determines whether the user wants to use an asynchronous BCI system before the operation of the asynchronous BCI system. This study presents a systematic review of the state-of-the-art brain-switch techniques and future research directions. To this end, we reviewed brain-switch research articles published from 2000 to 2019 in terms of their (a) neuroimaging modality, (b) paradigm, (c) operation algorithm, and (d) performance

    AR-PCA-HMM approach for sensorimotor task classification in EEG-based brain-computer interfaces

    Get PDF
    We propose an approach based on Hidden Markov models (HMMs) combined with principal component analysis (PCA) for classification of four-class single trial motor imagery EEG data for brain computer interfacing (BCI) purposes. We extract autoregressive (AR) parameters from EEG data and use PCA to decrease the number of features for better training of HMMs. We present experimental results demonstrating the improvements provided by our approach over an existing HMM-based EEG single trial classification approach as well as over state-of-the-art classification methods
    • 

    corecore